首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coordination of the N,N ligands 2,2-bipyridine (bipy) and 1,10-phenanthroline (phen) to Ga(III) has been investigated via the formation of new ionic hexacoordinated complexes of general formula [Q'(2)Ga(N,N)][X], where HQ' stands for 2-methyl-8-hydroxyquinoline and the counter anion X(-) is nitrate (NO(3)(-)) or hexafluorophosphate (PF(6)(-)). All synthesized complexes were characterized by single-crystal X-ray diffraction analysis. The geometry of the Ga(III) cations is octahedral and a single geometric isomer (all N, N trans conformation) has been obtained in all cases. The role of both the N,N ligand and the counter anion has been investigated in the formation of the crystal supramolecular motifs occurring in the 3D-crystal networks of these new class of ionic Ga(III) derivatives. A full investigation of the photophysical properties of the new synthesized ionic species is reported and discussed in relation to their crystalline packing and the degree of crystallinity of thin solid films as well as the nature of the N,N ligand and the counter anion.  相似文献   

2.
The direct reaction between [VCl(3)(thf)3] or [VO(OEt)3] and 2,2'-thiobis{4-(1,1,3,3-tetramethyl-butyl)phenol (tbopH(2)) leads to the formation of [V(2)(micro-tbop-kappa(3)O,S,O)2Cl(2)(CH(3)CN)(2)] (1).4CH(3)CN or [V(2)(micro-OEt)2(O)2(tbop-kappa(3)O,S,O)2] (2), respectively, in high yield. Compounds 1 and 2 were characterized by chemical and physical techniques including X-ray crystallography and variable temperature magnetic susceptibility studies (J = -29.1 cm(-1)) for 1. Complexes 1 and 2 were supported on MgCl2 and when activated with aluminium alkyls, were found to effectively polymerize ethene to produce polyethylene with a narrow molecular weight distribution M(w)/M(n) approximately 3.  相似文献   

3.
Three vanadium polymers [V2(µ-OH)2(H2O)2(Hpdc)2] n (1), {[Na2(µ-H2O)2][V2O2(pdc)2]} n (2) and {[K2(µ-H2O)][V2O2(pdc)2]} n (3) (H3pdc?=?3,5-pyrazoledicarboxylate acid) have been hydrothermally synthesized and characterized by spectroscopic methods, magnetic susceptibility measurements and X-ray crystallography. The structure of 1 consists of infinite double-stranded chains. Both 2 and 3 are 3D coordination polymers, featuring ladder-like moieties, made up of [V2O2(pdc)2] subunits, interconnected by pairs of alkali ion chains. Variable-temperature magnetic behavior reveals the existence of antiferromagnetic interactions in 1 and dominant ferromagnetic interactions in 2 and 3.  相似文献   

4.
The reaction of LLi, (L = [RNC(Me)CHC(Me) = O] (R = C2H4NEt2)), with AlCl3 at −78 °C forms the mono-ketiminate product, LAlCl2, 1, while the same reaction at 0 °C affords the bis-ketiminate complex, [{(LH)2AlCl}(Cl2)], 2, Reduction of 1 with Lio, Ko or Mgo yielded an unusual dimeric aluminum(III) species, [L′AlCl]2, 3, where C-C coupling of the ligand backbone is observed.  相似文献   

5.
Reaction between [VO(acac)(2)] and the ONN donor Schiff base Hsal-ambmz (I) (Hsal-ambmz = Schiff base obtained by the condensation of salicylaldehyde and 2-aminomethylbenzimidazole) resulted in the formation of the complexes [V(IV)O(acac)(sal-ambmz)] (1), [V(V)O(2)(acac-ambmz)] (2) (Hacac-ambmz = Schiff base derived from acetylacetone and 2-aminomethylbenzimidazole), and the known complex [V(IV)O(sal-phen)] (3) (H(2)sal-phen = Schiff base derived from salicylaldehyde and o-phenylenediamine). Similarly, [V(IV)O(acac)(sal-aebmz)] (7) has been isolated from the reaction with Hsal-aebmz (II) (Hsal-aebmz derived from salicylaldehyde and 2-aminoethylbenzimidazole). Aerial oxidation of the methanolic solutions/suspensions of 1 and 7 yielded the dioxovanadium(V) complexes [V(V)O(2)(sal-ambmz)] (4) and [V(V)O(2)(sal-aebmz)] (8), respectively. Reaction of VOSO(4) with II gave [{V(IV)O(sal-aebmz)}(2)SO(4)] (9) and [V(IV)O(sal-aebmz)(2)] (10), along with 3 and 8. Under similar reaction conditions, I gave only [{V(IV)O(sal-ambmz)}(2)SO(4)] (5) and 3 as major products. Treatment of 1 and 7 with benzohydroxamic acid (Hbha) yielded the mixed-chelate complexes [V(V)O(bha)(sal-ambmz)] (6) and [V(V)O(bha)(sal-aebmz)] (11). The crystal and molecular structures of 2, 3.1/2DMF, 7.1/4H(2)O, 8, 9.2H(2)O, 10, and 11 have been determined, confirming the ONN binding mode of the ligands. In complex 10, one of the ligands is coordinated through the azomethine nitrogen and phenolate oxygen only, leaving the benzimidazole group free. In the dinuclear complex 9, bridging functions are the phenolate oxygens from both of the ligands and two oxygens of the sulfato group. The unstable oxoperoxovanadium(V) complex [V(V)O(O(2))(sal-aebmz)] (12) has been prepared by treatment of 7 with aqueous H(2)O(2). Acidification of methanolic solutions of 7 and 10 lead to (reversible) protonation of the bemzimidazole, while 8 was converted to an oxo-hydroxo species. Complexes 2, 4, and 8 catalyze the oxidation of methyl phenyl sulfide to methyl phenyl sulfoxide and methyl phenyl sulfone, a reaction mimicking the sulfideperoxidase activity of vanadate-dependent haloperoxidases. These complexes are also catalytically active in the oxidation of styrene to styrene oxide, benzaldehyde, benzoic acid, and 1-phenylethane-1,2-diol.  相似文献   

6.
We have synthesized furan-based vanadium complexes, bis(5-nitrofuran-2-carboxylato)oxovanadium(IV) – [VO(5NF)2], bis(1-furan-2-yl-ethanonato)oxovanadium(IV) sulfate – [VO(2AF)2]SO4, and bis(5-methyl-2-furalato)oxovanadium(IV) sulfate – [VO(MFFA)2]SO4 possessing [VO(O4)] coordination mode. These complexes are characterized by physico-chemical and spectroscopic methods. Based on electron paramagnetic resonance parameters, the proposed geometry is close to a distorted square pyramid. Animal study was carried out using standard protocol and the complete profile of glucose, protein, and total cholesterol levels were analyzed followed by an oral glucose tolerance test.  相似文献   

7.
8.
The vanadium(III) complexes, V(S2CNMe2)3 (1) and V(S2CN i Pr2)3 (2) were prepared and characterized by analysis, IR, electronic and 1H NMR spectra. The complexes show reversible thermochromic behaviour. MM2 calculations were used to simulate the molecular structure of 1. For 2, variable temperature 1H NMR revealed hindered rotation about C–N bonds. The rotational energy barrier (38?kJ?mol?1) was obtained by molecular mechanics force-field calculations.  相似文献   

9.
The stoichiometric reactions of trimethylaluminum with 2,6‐(MeOCH2)2C6H3OH (LH) revealed compounds L3Al ( 1 ) and L2AlMe ( 2 ). On the other hand reaction of 1 equiv. of LH with trimethylaluminum did not lead to the formation of complex LAlMe2 ( 3 ), rather 2 together with Me3Al were observed as a result of a disproportionation of 3 . Compounds 1 and 2 were characterized by elemental analysis, 1H and 13C NMR spectroscopy and in the case of 1 by X‐ray diffraction. Derivative 2 underwent transmetalation with Ph3SnOH, giving LSnPh3 ( 4 ) as the result of a migration of ligand L from the aluminum to the tin atom. The identity of 4 was established by elemental analysis, 1H, 13C and 119Sn NMR spectroscopy and 1H, 119Sn HMBC experiments. The system 2 and B(C6F5)3 in a 1:1 molar ratio was shown to be active in the polymerization of propylene oxide and ε‐caprolactone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Reaction of [U{(SiMe2NPh)3-tacn}Cl] with LiNEt2 or LiNPh2 affords the corresponding amide compounds, [U{(SiMe2NPh)3-tacn}(NR2)] (R = Et (1), R = Ph (2)). The complexes have been fully characterized by spectroscopic methods and the solid-state structure of 1 was determined by single-crystal X-ray diffraction analysis. The six nitrogen atoms of the tris(dimethylsilylanilide)triazacyclononane ligand are in a trigonal prismatic configuration with the nitrogen atom of the diethylamide ligand capping one of the trigonal faces of the trigonal prism. Crystallization of 2 from CH3CN solution gave crystals of the six-membered heterocycle [U{(SiMe2NPh)3-tacn}{kappa2-(HNC(Me))2CC[triple bond]N}] (3). The reactivity of the amides was investigated. Both compounds undergo acid-base reactions with protic substrates such as HOC6H2-2,4,6-Me3, 3,5-Me2pzH (pz = pyrazolyl) and HSC5H4N to give the corresponding [U{(SiMe2NPh)3-tacn}X] (X = OC6H2-2,4,6-Me3 (4), 3,5-Me2pzH (5), kappa2-SC5H4N (6)) complexes. The solid-state structures of and were determined by single-crystal X-ray diffraction and revealed that the compounds are eight-coordinate with dodecahedral geometry.  相似文献   

11.
Reaction of 2-hydroxy-1-naphthaldehydebenzoylhydrazone(napbhH2) with manganese(II) acetate tetrahydrate and manganese(III) acetate dihydrate in methanol followed by addition of methanolic KOH in molar ratio (2 : 1 : 10) results in [Mn(IV)(napbh)2] and [Mn(III)(napbh)(OH)(H2O)], respectively. Activated ruthenium(III) chloride reacts with napbhH2 in methanolic medium yielding [Ru(III)(napbhH)Cl(H2O)]Cl. Replacement of aquo ligand by heterocyclic nitrogen donor in this complex has been observed when the reaction is carried out in presence of pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF (N,N-dimethyl formamide) of these complexes suggest non-electrolytic and 1 : 1 electrolytic nature for manganese and ruthenium complexes, respectively. Magnetic moment values of manganese complexes suggest Mn(III) and Mn(IV), however, ruthenium complexes are paramagnetic with one unpaired electron suggesting Ru(III). Electronic spectral studies suggest six coordinate metal ions in these complexes. IR spectra reveal that napbhH2 coordinates in enol-form and keto-form to manganese and ruthenium metal ions in its complexes, respectively. ESR studies of the complexes are also reported.  相似文献   

12.
The S-bonded sulfenamide isomers have been prepared by the known reaction of hydroxylamine-O-sulfonate with (en)(2)Co(III) thiolate complexes of aminoethanethiol, cysteine, and penicillamine and the cis dithiolate formed by N,N'-ethylene-di-penicillamine (EDP) and Co(III). It is shown that the sulfenamides undergo linkage isomerization in alkaline solution to produce their respective N-bonded linkage isomers. The addition of acid yields the protonated N-bonded isomers. The structures of [(en)(2)Co(NH(2)S(CH(2))(2)NH(2))](2)(S(2)O(6))(3) and [Co((NH(2)S)(2)EDP)]Br have been determined by X-ray crystallography, and the pK(a) of [(en)(2)Co(NH(2)S(CH(2))(2)NH(2))](3+) has been determined by spectrophotometry. The pH dependencies of the kinetics of the linkage isomerization reactions have been studied and yield pK(a) values of the S-bonded isomers. The (en)(2)Co systems give only the acid-stable N,N' isomer at equilibrium, whereas the EDP complex gives a mixture of N,N' and N,S isomers at pH 7-9.  相似文献   

13.
1,10-phenanthroline (phen), 2,2′-bipyridyl (bipy), pyridine (py) and 4-picoline (4-pic) complexes of dibutyltindichloride (Bu2SnCl2) and dimethyltindichloride (Me2SnCl2) were synthesized. The complexes were characterized with the help of elemental analyses, IR spectra and thermal analyses. The complexes were found to have the compositions [Bu2SnCl2·phen], [Bu2SnCl2·bipy], [Me2SnCl2·phen], [Me2SnCl2·bipy], [Me2SnCl2·2py] and [Me2SnCl2·2(4-pic)]·H2O. All these complex compounds appeared to posses octahedral structures. Thermodynamic parameters, such as activation energyE a * enthalpy change ΔH and entropy change ΔS, for the dehydration and sublimation of the complexes were evaluated using some standard methods.  相似文献   

14.
2-Benzoylpyridine N-methyl-N-phenylhydrazone, HL, is a versatile ligand which reacts with [Pd(PhCN)2Cl2] forming the coordination compound [HLPdCl2], 1, characterized by the presence of the N(py)/N(im) chelate ring. When HL reacts with [Pd3(OAc)6] this gives rise to the orthometallated complex [LPd(OAc)],. In this case the Pd(II) environment consists of a N(py)/N(im) ring fused to the N(im)/C palladacycle and a monodentate acetate anion. Complex undergoes methatetical reactions with alkaline halides and complexes of general formula [LPdX](3: X = Cl; 4: X = Br; 5: X = I) are obtained. The molecular structures 3-5 of determined by single-crystal X-ray analysis proved the formation in all cases of mononuclear Pd(II) complexes containing a N(py)/N(im)/C terdentate ligand. As solid samples only compounds 3-5 exhibited luminescence at room temperature (lambdamax approximately 610 nm). This property, quite unusual in Pd(II) complexes, is discussed in terms of pi-pi] interactions, which are mainly responsible for the existence in the crystalline solid state of dimeric units.  相似文献   

15.
Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)-peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+), were synthesized by reacting [Co(12-TMC)(CH(3)CN)](2+) and [Co(13-TMC)(CH(3)CN)](2+), respectively, with H(2)O(2) in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized by various spectroscopic techniques and X-ray crystallography, and the structural and spectroscopic characterization demonstrated unambiguously that the peroxo ligand is bound in a side-on η(2) fashion. The O-O bond stretching frequency of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) was determined to be 902 cm(-1) by resonance Raman spectroscopy. The structural properties of the CoO(2) core in both complexes are nearly identical; the O-O bond distances of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) were 1.4389(17) ? and 1.438(6) ?, respectively. The cobalt(III)-peroxo complexes showed reactivities in the oxidation of aldehydes and O(2)-transfer reactions. In the aldehyde oxidation reactions, the nucleophilic reactivity of the cobalt-peroxo complexes was significantly dependent on the ring size of the macrocyclic ligands, with the reactivity of [Co(13-TMC)(O(2))](+) > [Co(12-TMC)(O(2))](+). In the O(2)-transfer reactions, the cobalt(III)-peroxo complexes transferred the bound peroxo group to a manganese(II) complex, affording the corresponding cobalt(II) and manganese(III)-peroxo complexes. The reactivity of the cobalt-peroxo complexes in O(2)-transfer was also significantly dependent on the ring size of tetraazamacrocycles, and the reactivity order in the O(2)-transfer reactions was the same as that observed in the aldehyde oxidation reactions.  相似文献   

16.
Reduction of trans-[OsL2(O)2] (1) (L-=[N(i-Pr2PS)2]-) with hydrazine hydrate afforded a dinitrogen complex 2, possibly "[OsL2(N2)(solv)]" (solv=H2O or THF), which reacted with RCN, R'NC, and SO2 to give trans-[OsL2(RCN)2] (R=Ph (3), 4-tolyl (4), 4-t-BuC6H4 (5)), trans-[OsL2(R'NC)2] (R'=2,6-Me2C6H3 (xyl) (6), t-Bu (7)), and [Os(L)2(SO2)(H2O)] (8) complexes, respectively. Protonation of compounds 2, 3, and 6 with HBF4 led to formation of dicationic trans-[Os(LH)2(N2)(H2O)][BF4]2 (9), trans-[Os(LH)2(PhCN)2][BF4]2 (10), and trans-[Os(LH)2(xylNC)2][BF4]2 (11), respectively. Treatment of 1 with phenylhydrazine and SnCl2 afforded trans-[OsL2(N2Ph)2] (12) and trans-[OsL2Cl2] (13), respectively. Air oxidation of compound 2 in hexane/MeOH gave the dimethoxy complex trans-[OsL2(OMe)2] (14), which in CH2Cl2 solution was readily air oxidized to 1. Compound 1 is capable of catalyzing aerobic oxidation of PPh3, possibly via an Os(IV) intermediate. The formal potentials for the Os-L complexes have been determined by cyclic voltammetry. The solid-state structures of compounds 4, 6, cis-8, 13, and 14 have been established by X-ray crystallography.  相似文献   

17.
New non-oxovanadium(IV) complexes of biphenylphenols, [VCl2? n (bzac)2(OAr1,2) n ], have been synthesized in quantitative yields from the reaction of bis(benzoylacetonato)dichlorovanadium(IV) with the trimethylsilyl derivative of 2- and 4-phenylphenols in carbon tetrachloride. The complexes have been characterized by physicochemical, magnetic moment measurements, IR, mass spectra, and electrochemical studies. The thermal behavior of the complexes has been studied by TGA–DTA. The complexes have been screened for their antimicrobial activity against some pathogenic bacteria, Escherichia coli and Staphylococcus aureus and fungi, Candida albicans, Aspergillus niger, and Fusarium oxysporum, by two-fold serial dilution.  相似文献   

18.
Manganese(IV) complexes [MnIV(npah)(H2O)2] (1) and [MnIV(npah)(A)2]?·?nH2O (where A?=?py (2), 2-pic (3), 3-pic (4), 4-pic (5)) and MnIV(npah)(NN)] (NN?=?bpy (6) and phen (7)) have been synthesized from bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone in methanol. The composition of the complexes has been established by elemental analyses. Complex 3 has been characterized by mass spectral data also. Structural assessment of the complexes has been based on data from molar conductance, magnetic moment, electronic, electron paramagnetic resonance, and infrared (IR) spectral studies. Molar conductances of the complexes in DMSO suggest non-electrolytes. Magnetic moment and EPR studies suggest +4 oxidation state for manganese in these complexes. Electronic spectral studies suggest six-coordinate octahedral geometry around the metal ions. IR spectra reveal that H4npah coordinates to the metal in enol form. Reaction of the complexes with benzyl alcohol and SO2 has been investigated. Cyclic voltammetric studies of the complexes have also been carried out.  相似文献   

19.
Synthetic routes to vanadium(V)-phosphinimide derivatives are addressed. Initial synthetic efforts afforded the known compound formulated as VCl(2)(NPPh(3))(3) which was crystallographically determined to be the salt [VCl(NPPh(3))(3)]Cl (1). Reactions of the vanadium-imide precursors VCl(3)(NAr) (Ar = Ph, C(6)H(3)-2,6-iPr(2)) with R(3)PNSiMe(3) (R = Ph, iPr, tBu) afforded VCl(2)(NPh)(NPPh(3)) (4), VCl(2)(NPh)(NPiPr(3)) (5), VCl(2)(NPh)(NPtBu(3)) (6), VCl(2)(NC(6)H(3)-2,6-iPr(2))(NPPh(3)) (7), VCl(2)(NC(6)H(3)-2,6-iPr(2))(NPiPr(3)) (8), and VCl(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (9) in yields ranging from 72% to 84%. Subsequent alkylation or arylation reactions resulted in VMe(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (10), VPh(2)(NPh)(NPtBu(3)) (11), VPh(2)(NC(6)H(3)-2,6-iPr(2))(NPiPr(3)) (12), and VPh(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (13) while substitution reactions with Li[N(SiMe(3))(2)] and Li[SBn] gave VCl(N(SiMe(3))(2))(NPh)(NPtBu(3)) (14) and V(SBn)(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (15) in yields ranging from 40% to 49% yield. Polarization of the N-P phosphinimide bond and V-N multiple bond character are evidenced by crystallographic data.  相似文献   

20.
Complexes [Re(ONCMe2)(CO)3(bipy)] (1) and [Re(ONCMe2)(CO)3(phen)] (2), synthesized by reaction of the respective triflato precursors [Re(OTf)(CO)3(N-N)] (N-N = bipy, phen) with KONCMe2, feature O-bonded monodentate oximato ligands. Compound [Re(CO)3(phen)(HONCMe2)]BAr'4 (3), with a monodentate N-bonded oxime ligand, was prepared by reaction of [Re(OTf)(CO)3(phen)], HONCMe2, and NaBAr'4. Deprotonation of 3 afforded 2. The oximato complexes reacted with p-tolylisocyanate, p-tolylisothiocyanate, maleic anhydride, and tetracyanoethylene, affording the products of the insertion of the electrophile into the Re-O bond, compounds 4-7. One representative of each type of compound was fully characterized, including single-crystal X-ray diffraction. The reactions of 1 and 2 with dimethylacetylenedicarboxylate were found to involve first an insertion as the ones mentioned above but followed by incorporation of water, loss of acetone, and formation of the charge-separated neutral amido complexes 9 and 10. The structure of 9 and 10 was determined by X-ray diffraction, and key features of their electronic distribution were studied using a topological analysis of the electron density as obtained from the Fourier map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号