首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
The ammonia solvated mercury(II) ion has been structurally characterized in solution by means of EXAFS, (199)Hg NMR, and Raman spectroscopy and in solid solvates by combining results from X-ray single crystal and powder diffraction, thermogravimetry, differential scanning calorimetry, EXAFS, and Raman spectroscopy. Crystalline tetraamminemercury(II) perchlorate, [Hg(NH3)4](ClO4)2, precipitates from both liquid ammonia and aqueous ammonia solution, containing tetraamminemercury(II) complexes. The orthorhombic space group ( Pnma) imposes C s symmetry on the tetraamminemercury(II) complexes, which is lost at a phase transition at about 220 K. The Hg-N bond distances are 2.175(14), 2.255(16), and 2 x 2.277(9) A, with a wide N-Hg-N angle between the two shortest Hg-N bonds, 122.1(7) degrees , at ambient temperature. A similar distorted tetrahedral coordination geometry is maintained in liquid ammonia and aqueous ammonia solutions with the mean Hg-N bond distances 2.225(12) and 2.226(6) A, respectively. When heated to 400 K the solid tetraamminemercury(II) perchlorate decomposes to diamminemercury(II) perchlorate, [Hg(NH3)2](ClO4)2, with the mean Hg-N bond distance 2.055(6) A in a linear N-Hg-N unit. The mercury atoms in the latter compound form a tetrahedral network, connected by perchlorate oxygen atoms, with the closest Hg...Hg distance being 3.420(3) A. The preferential solvation and coordination changes of the mercury(II) ion in aqueous ammonia, by varying the total NH 3:Hg(II) mole ratio from 0 to 130, were followed by (199)Hg NMR. Solid [Hg(NH 3)4](ClO4)2 precipitates while [Hg(H2O)6](2+) ions remain in solution at mole ratios below 3-4, while at high mole ratios, [Hg(NH3)4](2+) complexes dominate in solution. The principal bands in the vibrational spectrum of the [Hg(NH3)4](2+) complex have been assigned.  相似文献   

2.
The reactions of CoX(2) (X = Cl(-), Br(-), I(-) and ClO(4)(-)) with the tripodal polypyridine N(4)O(2)-type ligand bearing pivalamide groups, bis(6-(pivalamide-2-pyridyl)methyl)(2-pyridylmethyl)amine ligand (H(2)BPPA), afforded two types of Co(II) complexes as follows. One type is purple-coloured Co(II) complexes, [CoCl(2)(H(2)BPPA)] (1(Cl)) and [CoBr(2)(H(2)BPPA)] (1(Br)) which were prepared when X = Cl(-) and Br(-), respectively. The other type is pale pink-coloured Co(II) complexes, [Co(MeOH)(H(2)BPPA)](ClO(4)(-))(2) (2·(ClO(4)(-))(2)) and [Co(MeCN)(H(2)BPPA)](I(-))(2) (2·(I(-))(2)), which were obtained when X = I(-) and ClO(4)(-), respectively. From the reaction of 1(Cl) and NaN(3), a purple-coloured complex, [Co(N(3))(2)(H(2)BPPA)] (1(azide)), was obtained. These Co(II) complexes were characterized by X-ray structural analysis, IR and reflectance spectroscopies, and magnetic susceptibility measurements. All these Co(II) complexes were shown to be in a d(7) high-spin state based on magnetic susceptibility measurements. The former Co(II) complexes revealed a six-coordinate octahedron with one amine nitrogen, three pyridyl nitrogens, and two counter anions, and one coordinated anion, Cl(-), Br(-) and N(3)(-), forming intramolecular hydrogen bonds with two pivalamide N-H groups. On the other hand, the latter Co(II) complexes showed a seven-coordinate face-capped octahedron with one amine nitrogen, three pyridyl nitrogens, two pivalamide carbonyl oxygens and MeCN or MeOH. In these structures, intramolecular hydrogen bonding interaction was not observed, and the metal ion was coordinated by the pivalamide carbonyl oxygens and solvent molecule instead of the counter anions. The difference in coordination geometries might be attributable to the coordination ability and ionic radii of the counteranions; smaller strongly binding anions such as Cl(-), Br(-) and N(3)(-) gave the former complexes, whereas bulky weakly binding anions such as I(-) and ClO(4)(-) afforded the latter ones. In order to demonstrate this hypothesis, the small stronger coordinating ligand, azide, was added to complexes 2·(ClO(4)(-))(2) to obtain the dinuclear cobalt(II) complex in which two six-coordinate octahedral cobalt(II) species were bridged with azide, 3·(ClO(4)(-)). Also, the abstraction reaction of halogen anions from complexes 1(Cl) by AgSbF(6) gave a pale pink Co(II) complex assignable to 2·(SbF(6)(-))(2).  相似文献   

3.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

4.
The metal ion complexing properties of the ligand DPP (2,9-di-(pyrid-2-yl)-1,10-phenanthroline) were studied by crystallography, fluorimetry, and UV-visible spectroscopy. Because DPP forms five-membered chelate rings, it will favor complexation with metal ions of an ionic radius close to 1.0 A. Metal ion complexation and accompanying selectivity of DPP is enhanced by the rigidity of the aromatic backbone of the ligand. Cd2+, with an ionic radius of 0.96 A, exhibits a strong CHEF (chelation enhanced fluorescence) effect with 10(-8) M DPP, and Cd2+ concentrations down to 10(-9) M can be detected. Other metal ions that cause a significant CHEF effect with DPP are Ca2+ (10(-3) M) and Na+ (1.0 M), whereas metal ions such as Zn2+, Pb2+, and Hg2+ cause no CHEF effect with DPP. The lack of a CHEF effect for Zn2+ relates to the inability of this small ion to contact all four donor atoms of DPP. The structures of [Cd(DPP)2](ClO4)2 (1), [Pb(DPP)(ClO4)2H2O] (2), and [Hg(DPP)(ClO4)2] (3) are reported. The Cd(II) in 1 is 8-coordinate with the Cd-N bonds to the outer pyridyl groups stretched by steric clashes between the o-hydrogens on these outer pyridyl groups and the central aromatic ring of the second DPP ligand. The 8-coordinate Pb(II) in 2 has two short Pb-N bonds to the two central nitrogens of DPP, with longer bonds to the outer N-donors. The coordination sphere around the Pb(II) is completed by a coordinated water molecule, and two coordinated ClO4(-) ions, with long Pb-O bonds to ClO4(-) oxygens, typical of a sterically active lone pair on Pb(II). The Hg(II) in 3 shows an 8-coordinate structure with the Hg(II) forming short Hg-N bonds to the outer pyridyl groups of DPP, whereas the other Hg-N and Hg-O bonds are rather long. The structures are discussed in terms of the fit of large metal ions to DPP with minimal steric strain. The UV-visible studies of the equilibria involving DPP and metal ions gave formation constants that show that DPP has a higher affinity for metal ions with an ionic radius close to 1.0 A, particularly Cd(II), Gd(III), and Bi(III), and low affinity for small metal ions such as Ni(II) and Zn(II). The complexes of several metal ions, such as Cd(II), Gd(III), and Pb(II), showed an equilibrium involving deprotonation of the complex at remarkably low pH values, which was attributed to deprotonation of coordinated water molecules according to: [M(DPP)(H2O)]n+ <==> [M(DPP)(OH)](n-1)+ + H+. The tendency to deprotonation of these DPP complexes at low pH is discussed in terms of the large hydrophobic surface of the coordinated DPP ligand destabilizing the hydration of coordinated water molecules and the build-up of charge on the metal ion in its DPP complex because of the inability of the coordinated DPP ligand to hydrogen bond with the solvent.  相似文献   

5.
The complex formation between mercury(II) and penicillamine (H(2)Pen = 3,3'-dimethyl cysteine) in alkaline aqueous solutions (pH approximately 2) has been investigated with extended X-ray absorption fine structure (EXAFS) and 199Hg NMR spectroscopy. By varying the penicillamine concentration (C(H(2)Pen) = 0.2-1.25 M) in approximately 0.1 M Hg(II) solutions, two coexisting major species [Hg(Pen)2](2-) and [Hg(Pen)3](4-) were characterized with mean Hg-S bond distances 2.34(2) and 2.44(2) A, respectively. The [Hg(Pen)2](2-) complex with two deprotonated penicillamine ligands forms an almost linear S-Hg-S entity with two weak chelating Hg-N interactions at the mean Hg-N distance 2.52(2) A. The same type of coordination is also found for the corresponding [Hg(Cys)2](2-) complex in alkaline aqueous solution with the mean bond distances Hg-S 2.34(2) A and Hg-N 2.56(2) A. The relative amounts of the [Hg(Pen)2](2-) and [Hg(Pen)3](4-) complexes were estimated by fitting linear combinations of the EXAFS oscillations to the experimental spectra. Also their (199)Hg NMR chemical shifts were used to evaluate the complex formation, showing that the [Hg(Pen)3](4-) complex dominates already at moderate excess of the free ligand ([Pen(2-)] > approximately 0.1 M).  相似文献   

6.
Bu XH  Xie YB  Li JR  Zhang RH 《Inorganic chemistry》2003,42(23):7422-7430
In our efforts to systematically investigate the effects of the linker units of flexible ligands and other factors on the structures of Ag(I) complexes with thioethers, five new flexible pyridyl thioether ligands, bis(2-pyridylthio)methane (L(1)()), 1,3-bis(2-pyridylthio)propane (L(3)()), 1,4-bis(2-pyridylthio)butane (L(4)), 1,5-bis(2-pyridylthio)pentane (L(5)), and 1,6-bis(2-pyridylthio)hexane (L(6)), have been designed and synthesized, and the reactions of these ligands with Ag(I) salts under varied conditions (varying the solvents and counteranions) lead to the formation of eight novel metal-organic coordination architectures from di- and trinuclear species to two-dimensional networks: [Ag(3)(L(1)())(2)(ClO(4))(2)](ClO(4)) (1), [[AgL(3)](ClO(4))]( infinity ) (2), [[Ag(2)(L(4))(2)](ClO(4))(2)(CHCl(3))]( infinity ) (3), [[AgL(4)](ClO(4))(C(3)H(6)O)]( infinity ) (4), [[Ag(2)L(4)](NO(3))(2)]( infinity ) (5), [Ag(2)L(4)()(CF(3)SO(3))(2)]( infinity ) (6), [[AgL(5)](ClO(4))(CHCl(3))](2) (7), and [[AgL(6)()](ClO(4))]( infinity ) (8). All the structures were established by single-crystal X-ray diffraction analysis. The coordination modes of these ligands were found to vary from N,N-bidentate to N,N,S-tridentate to N,N,S,S-tetradentate modes, while the Ag(I) centers adopt two-, three-, or four-coordination geometries with different coordination environments. The structural differences of 1, 2, 3, 7, and 8 indicate that the subtle variations on the spacer units can greatly affect the coordination modes of the terminal pyridylsulfanyl groups and the coordination geometries of Ag(I) ions. The structural differences of 3 and 4 indicate that solvents also have great influence on the structures of Ag(I) complexes, and the differences between 3, 5, and 6 show counteranion effects in polymerization of Ag(I) complexes. The influences of counterions and solvents on the frameworks of these complexes are probably based upon the flexibility of ligands and the wide coordination geometries of Ag(I) ions. The results of this study indicate that the frameworks of the Ag(I) complexes with pyridyl dithioethers could be adjusted by ligand modifications and variations of the complex formation conditions.  相似文献   

7.
Paul S  Barik AK  Peng SM  Kar SK 《Inorganic chemistry》2002,41(22):5803-5809
Copper(II) complexes of a novel pyrazole containing porphyrinogen and cobalt(III) and zinc(II) complexes of a pyrazole containing tripodal ligand having N-donor atoms have been investigated. 5-Methyl-3-formylpyrazole (MPA) on reaction with copper(II) nitrate or perchlorate in the presence of tris(2-aminoethyl)amine (tren) forms novel pyrazole-based porphyrinogen complexes [Cu(T(3)-porphyrinogen)(H(2)O)](NO(3))(2) (1a) and [Cu(T(3)-porphyrinogen)(H(2)O)](ClO(4))(2) (1b) where T(3)-porphyrinogen is 1,6,11,16-tetraaza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen. The same products are also obtained when tren is replaced by triethylamine. By contrast, the reaction between MPA, tren, and cobalt(II) perchlorate produces the cobalt(III) complex [Co(HMPz(3)tren)]ClO(4) (2) derived from the tripodal Schiff base tris[4-(3-(5-methyl-pyrazolyl)-3-aza-3-butenyl]amine (H(3)MPz(3)tren). The X-ray crystal structures of the copper(II) complexes (1a and 1b) and the cobalt(III) complex (2) have been determined. The structures show distorted square pyramidal coordination environments for 1a and 1b with the water molecule occupying the apical site, while for complex 2 a distorted octahedral geometry is obtained. Data for 1a follow: a = 19.476(3) A, b = 9.4116(8) A, c = 14.204(3) A; alpha = 90 degrees = gamma, beta = 107.58(2) degrees; V = 2482.0(7) A(3), Z = 4. Data for 1b follow: a = 20.967(3) A, b = 9.1563(18) A, c = 14.858(4) A; alpha = 90 degrees = gamma, beta = 108.44(3) degrees; V = 2706.0(10) A(3), Z = 4. Data for 2 follow: a = 21.293(3) A, b = 12.724(2) A, c = 19.777(4) A; alpha = 90 degrees = gamma, beta = 93.03(2) degrees; V = 5350.6(15) A(3), Z = 8. All three complexes crystallize in the monoclinic crystal system with the C2/c space group. The complexes are further characterized by UV-vis, IR, EPR, and electrochemical studies.  相似文献   

8.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

9.
A series of heterodinuclear bis(mu-hydroxo)chromium(III)nickel(II) complexes was newly prepared: [(phen)(2)Cr(mu-OH)(2)Ni(tpa)](ClO(4))(3) x 0.5H(2)O (1), [(phen)(2)Cr(mu-OH)(2)Ni(Me-tpa)](ClO(4))(3) x 2H(2)O (2), [(phen)(2)Cr(mu-OH)(2)Ni(Me(2)-tpa)](ClO(4))(3) x 2H(2)O (3), and [(phen)(2)Cr(mu-OH)(2)Ni(Me(3)-tpa)](ClO(4))(3) x 3H(2)O (4), where phen is 1,10-phenanthroline and tpa, Me-tpa, Me(2)-tpa, and Me(3)-tpa are tris(2-pyridylmethyl)amine, [(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine, bis[(6-methyl-2-pyridyl)methyl](2-pyridylmethyl)amine, and tris[(6-methyl-2-pyridyl)methyl]amine, respectively. X-ray crystallography revealed that the structures of 1-4 resemble one another having an edge-shared bioctahedral structure with a Cr(mu -OH)(2)Ni unit (crystal data: 1 x C(2)H(5)OH, triclinic, P1, a = 13.179(4) A, b = 13.685(4) A, c = 14.260(4) A, alpha = 84.95(2) degrees, beta = 77.65(1) degrees, gamma = 90.21(2) degrees, V = 2502(1) A(3), Z = 2, R = 0.103, R(w) = 0.097; 2 x C(2)H(5)OH, triclinic, P1, a = 13.214(2) A, b = 13.657(2) A, c = 14.417(3) A, alpha = 95.205(5) degrees, beta = 102.583(4) degrees, gamma =90.720(3) degrees, V = 2527.3(8) A(3), Z = 2, R = 0.090, R(w) = 0.122; 3 x C(2)H(5)OH, triclinic, P1, a = 13.276(2) A, b =13.696(2) A, c = 14.454(2) A, alpha = 95.640(3) degrees, beta = 102.821(4) degrees, gamma = 90.174(3) degrees, V = 2549.5(6) A(3), Z = 2, R= 0.087, R(w)= 0.119; 4, triclinic, P1, a = 10.8916(9) A, b = 14.268(2) A, c = 17.522(2) A, alpha = 84.498(9) degrees, beta = 74.313(7) degrees, gamma = 72.402(7) degrees, V = 2498.6(5) A(3), Z = 2, R = 0.060, R(w)= 0.088). Chromium and nickel ions are coordinated by two phen's and Me(n)-tpa, respectively, to complete a distorted octahedral coordination sphere. Introduction of the 6-methyl group(s) onto the pyridyl group(s) results in the elongation of the Ni-N bond distances due to an unfavorable steric interaction between the methyl group and the bridging hydroxide group: systematic elongation of the Ni-N bond distances and the Cr ...Ni separations accompanied by an increase in the Cr-O-Ni angles was observed as the number of the methyl groups increases. Variable-temperature magnetic susceptibility measurements of 1-4 (4.2-300 K) indicated that magnetic interactions between Cr(III) and Ni(II) ions are systematically modulated from a very weak antiferromagnetic interaction to a ferromagnetic interaction as the number of the methyl groups increases; the exchange integrals J's for 1-4 are estimated to be -1.4, +0.0, +4.1, and +7.4 cm(-1), respectively. The magneto-structural relationship is discussed in terms of the change in the magnetic orbital energies of nickel(II) centers arising from the change in the Ni-N bond distances.  相似文献   

10.
The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).  相似文献   

11.
A series of trigonal bipyramidal pentanuclear complexes involving the alkoxo-diazine ligands poap and p3oap, containing the M(5)[mu-O](6) core is described, which form by a strict self-assembly process. [Co(5)(poap-H)(6)](ClO(4))(4).3H(2)O (1), [Mn(5)(poap-H)(6)](ClO(4))(4).3.5CH(3)OH.H(2)O (2), [Mn(5)(p3oap-H)(6)](ClO(4))(4).CH(3)CH(2)OH.3H(2)O (3), and [Zn(5)(poap-H)(6)](ClO(4))(4).2.5H(2)O (4) are homoleptic pentanuclear complexes, where there is an exact match between the coordination requirements of the five metal ions in the cluster, and the available coordination pockets in the polytopic ligand. [Zn(4)(poap)(poap-H)(3)(H(2)O)(4)] (NO(3))(5).1.5H(2)O (5) is a square [2 x 2] grid with a Zn(4)[mu-O](4) core, and appears to result from the presence of NO(3), which is thought to be a competing ligand in the self-assembly. X-ray structures are reported for 1, 4, and 5. 1 crystallized in the monoclinic system, space group P2(1)/n with a = 13.385(1) A, b = 25.797(2) A, c = 28.513(3) A, beta = 98.704(2) degrees, and Z = 4. 4 crystallized in the triclinic system, space group P1 with a = 13.0897(9) A, b = 18.889(1) A, c = 20.506(2) A, alpha = 87.116(1) degrees, beta = 74.280(2) degrees, gamma = 75.809(2) degrees, and Z = 2. 5 crystallized in the monoclinic system, space group P2(1)/n with a = 14.8222(7) A, b = 21.408(1) A, c = 21.6197(9) A, beta = 90.698(1) degrees, and Z = 4. Compounds 1-3 exhibit intramolecular antiferromagnetic coupling.  相似文献   

12.
We wish to report the first measurements of (199)Hg NMR chemical shift data for a series of homoleptic Hg(II) complexes with thiacrown ligands and related aza and mixed thia/aza macrocycles. In mercury(II) complexes containing trithiacrown through hexathiacrown ligands, we observed (199)Hg NMR chemical shifts in the range of -298 to -1400 ppm. Upfield chemical shifts in these NMR spectra are seen whenever (a) the number of thioether sulfur donors in the complex is decreased, (b) a thioether sulfur donor is replaced by a secondary nitrogen donor, and (c) the size of the macrocycle ring increases without a change in the nature or number of the donor atoms. Changes in noncoordinating anions, such as hexafluorophosphate and perchlorate, have little effect on the (199)Hg chemical shift. For several complexes, we observed (3)J((199)Hg-(1)H) coupling in the range of 50-100 Hz, the first example of proton-mercury coupling through a C-S thioether bond. Also, we obtained unusual upfield (13)C NMR chemical shifts for methylene resonances in several of the thiacrown complexes which correspond to distortions within the five- and six-membered chelate rings bound to the mercury ion. We report the X-ray crystal structure of the complex [Hg(18S6)](PF(6))(2) (18S6 = 1,4,7,10,13,16-hexathiacyclooctadecane). The molecule crystallizes in the rare trigonal space group Pm1 with hexakis(thioether) coordination around the Hg(II) center confirming previous X-ray photoemission spectroscopic data on the compound. The lack of an observable (199)Hg NMR signal for the complex is the result of the identical length (2.689(2) Angstroms) of all six Hg-S bonds. We additionally report the X-ray structure of the complex [Hg(9N3)(2)](ClO(4))(2) (9N3 = 1,4,7-triazacyclononane) which shows hexakis(amine) coordination of the 9N3 to form a distorted trigonal prismatic structure. Solution dissociation of the one of the 9N3 ligands from the mercury ion is confirmed by multinuclear NMR experiments. For six-coordinate macrocyclic Hg(II) complexes, N6 donor sets have a preference for trigonal prisms while S6 donor sets favor octahedral structures.  相似文献   

13.
The syntheses and X-ray structures of [Co(Me-tpa)O(2)COZnCl(3)], [Co(pmea)O(2)COZnCl(3)].H(2)O [Co(trpyn)O(2)COZn(OH(2))(4)OCO(2)Co(trpyn)](ZnCl(4))(2).H(2)O, [Co(trpyn)(O(2)COH)]ZnCl(4).3H(2)O and [Co(trpyn)(O(2)CO)]ClO(4) are reported (Me-tpa = [(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine, pmea = bis(2-pyridylmethyl)-2-(2-pyridylethyl)amine, trpyn = tris(2-(1-pyrazolyl)ethyl)amine). The chelated bicarbonate complex [Co(trpyn)(O(2)COH)]ZnCl(4).3H(2)O is isolated as a crystalline solid from an acidic solution of the parent carbonate [Co(trpyn)(O(2)CO)]ClO(4), and X-ray structural analysis shows that lengthening of the C[double bond, length as m-dash]O(exo) bond and shortening of the C-O(endo) bond accompanies protonation. The bimetallic complex [Co(Me-tpa)O(2)COZnCl(3)] results from the unexpected coordination of ZnCl(3)(-) to the exo O atom of a chelated carbonate ligand. This complex is obtained from both acidic and neutral solutions in which [Zn(2+)] = 1.0 M, while the structurally similar complex [Co(pmea)O(2)COZnCl(3)].H(2)O is isolated from an analogous neutral solution. The trimetallic complex [Co(trpyn)O(2)COZn(OH(2))(4)OCO(2)Co(trpyn)](ZnCl(4))(2).H(2)O crystallises on prolonged standing of [Co(trpyn)(O(2)CO)]ClO(4) in a neutral solution having [Zn(2+)] = 1.0 M. The Zn-O bond lengths in all three complexes are indicative of bonds of significant strength. DFT calculations show that the nature of the bonding interaction between the Co(iii) ion and the endo O atoms of the carbonate ligand remain essentially unaffected by coordination of Zn(2+) to the exo O atom. They also show that such coordination of Zn(2+) decreases the C-O(exo) bond order.  相似文献   

14.
Liquid ammonia, trialkyl phosphites, and especially trialkylphosphines, are very powerful electron-pair donor solvents with soft bonding character. The solvent molecules act as strongly coordinating ligands towards mercury(ii), interacting strongly enough to displace halide ligands. In liquid ammonia mercury(ii) chloride solutions separate into two liquid phases; the upper contains tetraamminemercury(ii) complexes, [Hg(NH(3))(4)](2+), and chloride ions in low concentration, while the lower is a dense highly concentrated solution of [Hg(NH(3))(4)](2+) entities, ca. 1.4 mol dm(-3), probably ion-paired by hydrogen bonds to the chloride ions. Mercury(ii) bromide also dissociates to ionic complexes in liquid ammonia and forms a homogeneous solution for which (199)Hg NMR indicates weak bromide association with mercury(ii). When dissolving mercury(ii) iodide in liquid ammonia and triethyl phosphite solvated molecular complexes form in the solutions. The Raman nu(I-Hg-I) symmetric stretching frequency is 132 cm(-1) for the pseudo-tetrahedral [HgI(2)(NH(3))(2)] complex formed in liquid ammonia, corresponding to D(S) = 56 on the donor strength scale. For the Hg(ClO(4))(2)/NH(4)I system in liquid ammonia a (199)Hg NMR study showed [HgI(4)](2-) to be the dominating mercury(ii) complex for mole ratios n(I(-)) : n(Hg(2+)) > or = 6. A large angle X-ray scattering (LAXS) study of mercury(ii) iodide in triethyl phosphite solution showed a [HgI(2)(P(OC(4)H(9))(3))(2)] complex with the Hg-I and Hg-P bond distances 2.750(3) and 2.457(4) A, respectively, in near tetrahedral configuration. Trialkylphosphines generally form very strong bonds to mercury(ii), dissociating all mercury(ii) halides. Mercury(ii) chloride and bromide form solid solvated mercury(ii) halide salts when treated with tri-n-butylphosphine, because of the low permittivity of the solvent. A LAXS study of a melt of mercury(ii) iodide in tri-n-butylphosphine at 330 K resulted in the Hg-I and Hg-P distances 2.851(3) and 2.468(4) A, respectively. The absence of a distinct I-I distance indicates flexible coordination geometry with weak and non-directional mercury(ii) iodide association within the tri-n-butylphosphine solvated complex.  相似文献   

15.
The planar aromatic tridentate ligand 2,6-bis(1-S-neopentylbenzimidazol-2-yl)pyridine (L(11)) reacts with Ln(III) (Ln = La-Lu) in acetonitrile to give the successive complexes [Ln(L(11))(n)](3+) (n = 1-3). However, stability constants determined by spectrophotometry and NMR titrations show that formation of the tris complexes is not favored, log K(3) being around 1 for La(III) and Eu(III), while no such species could be evidenced for the smaller Lu(III) ion. The X-ray structures of L(11) (monoclinic, P2(1), a = 13.4850(12) A, b = 12.0243(11) A, c = 16.4239(14) A, beta = 103.747(7) degrees ), [La(ClO(4))(2)(L(11))(2)](3)[La(ClO(4))(2)(H(2)O)(L(11))(2)](ClO(4))(4).15MeCN (1a, monoclinic, P2(1), a = 21.765(4) A, b = 30.769(6) A, c = 21.541(5) A, beta = 116.01(3) degrees ), and [Eu(L(11))(3)](ClO(4))(3).4.28MeCN (5a, monoclinic, P1, a = 14.166(3) A, b = 19.212(4) A, c = 21.099(4) A, alpha = 108.91(3) degrees, beta = 98.22(3) degrees, gamma = 108.40(3) degrees ) have been solved. In 1a, two different types of complex cations are evidenced, both containing 10-coordinate La(III) ions. In the first type, both perchlorate anions are bidentate, while in the second type, one perchlorate is monodentate, the 10th coordination position being occupied by a water molecule. In 5a the three ligands are not equivalent. Ligands A and B are wrapped in a helical way and are mirror images of each other, while ligand C lies almost perpendicular to the two other ones. This stems from the steric hindrance generated by the bulky neopentyl groups with the consecutive loss of any stabilizing interstrand pi-stacking interactions. This explains the low stability of the tris complexes and the difficulty of isolating them and points to the importance of the steric factors in the design of self-assembled triple helical lanthanide-containing functional edifices [Ln(L(i))(3)](3+).  相似文献   

16.
X-band e.s.r. and optical absorption spectra of the imidazolate bridged heterobimetallic complexes [(tren)Cu-E-Im-Zn-(tren)](ClO(4))(3) and [(tren)Cu-E-Im-Ni-(tren)](ClO(4))(3), where trentris(2-aminoethyl)amine, E-Im=2-ethylimidazolate ion and the related mononuclear complexes [Cu(tren)](ClO(4))(2) and [(tren)Cu-E-ImH)](ClO(4))(2) have been described. Biological activities (superoxide dismutase and antimicrobial) have also been measured and compared with reported complexes.  相似文献   

17.
A new polydentate bridging ligand, NH(4)C(5)N=NC(6)H(4)N(H)C(5)H(4)N (HL(2)), is synthesized by the cobalt-mediated phenyl ring amination of coordinated NH(4)C(5)N=NC(6)H(5). The green cobalt complex intermediate [Co(L(2))(2)](ClO(4)), [1](ClO(4)), and the free ligand HL(2) were isolated and characterized. The X-ray structure of [H(2)L(2)](ClO(4)) is reported. The ligand, upon deprotonation, behaves as a bridging ligand. It reacts with NiCl(2).6H(2)O and Na(2)[PdCl(4)] to produce dimetallic complexes, [Ni(2)Cl(2)(L(2))(2)], 2, and [Pd(2)(L(2))(2)](ClO(4))(2), [3](ClO(4))(2), respectively. X-ray structures of these two dimetallic complexes are reported. The structure of the dinickel complex, in particular, is unique. In this complex, the two deprotonated secondary amine nitrogens of the two [L(2)](-) ligands bind to two nickel centers simultaneously forming a planar Ni(2)N(2) arrangement. The complex [3](ClO(4))(2) is diamagnetic while the complex 2 is paramagnetic. The results of magnetic measurements on the dinickel complex in the temperature range 1.8-300 K are reported. The system can be described as a single spin S = 2 in the low-temperature range T < J/k whereas at high temperatures, T > J/k, it behaves as two independent spins S = 1.The reaction of [L(2)](-) with K(2)[PtCl(4)], however, yielded a monometallic platinum complex, [PtCl(3)(L(2))], 5, where the pyridyl nitrogen of the aminopyridyl function remained unused. The X-ray structure of the complex 4a is reported. The bond lengths along the ligand backbones in all the complexes indicate extensive pi-delocalization. Spectral data of the complexes are reported and compared.  相似文献   

18.
The syntheses, structural characterization, and magnetic behavior of the three new polynuclear copper(II) complexes with formulas [Cu(4)(eta(2):mu-CH(3)COO)(2)(mu-OH)(2)(mu-OH(2))(mu-bdmap)(2)](ClO(4))(2).H(2)O (1), [Cu(8)(NCO)(2)(eta(1):mu-NCO)(4)(mu-OH)(2)(mu(3)-OH)(2)(mu-OH(2))(3)(mu-bdmap)(4)](ClO(4))(2)x2H(2)O (2), and [Cu(9)(eta(1):mu-NCO)(8)(mu(3)-OH)(4)(OH(2))(2)(mu-bdmap)(4)](ClO(4))(2).4H(2)O (3), in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, are reported. Tetranuclear complex 1 crystallizes in the triclinic system, space group P, with unit cell parameters a = 12.160(1) A, b = 13.051(1) A, c = 13.235(1) A, alpha = 110.745(1) degrees , beta = 109.683(1) degrees , gamma = 97.014(1), and Z = 2. Octanuclear complex 2 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 26.609(1) A, b = 14.496(1) A, c = 16.652(1) A, beta = 97.814(1) degrees , and Z = 4, and nonanuclear complex 3 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 24.104(1) A, b = 13.542(1) A, c = 24.355(1) A, beta = 109.98(1) degrees , and Z = 4. The magnetic behavior of the three complexes has been checked showing strong antiferromagnetic coupling in all the cases.  相似文献   

19.
1,3-Dimethyluracil (1,3-DimeU) reacts with trans-[(CH(3)NH(2))(2)Pt(H(2)O)(2)](+) to give trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(H(2)O)]X (X = NO(3)(-), 1a, ClO(4)(-), 1b) and subsequently with NaCl to give trans-(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)Cl (2) or with NH(3) to yield trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(NH(3))]ClO(4) (3). In a similar way, (dien)Pt(II) forms [dienPt(1,3-DimeU-C5)](+) (4). Reactions leading to formation of 1 and 4 are slow, taking days. In contrast, Hg(CH(3)COO)(2) reacts fast with 1,3-DimeU to give (1,3-DimeU-C5)Hg(CH(3)COO) (5). Both 1-methyluracil (1-MeUH) and uridine (urdH) react with (dien)Pt(II) initially at N(3) and subsequently with either (dien)Pt(II) or Hg(CH(3)COO)(2) also at C(5) to give the diplatinated species 7 and 9 or the mixed PtHg complex 8. C(5) binding of either Pt(II) or Hg(II) is evident from coupling of uracil-H(6) with either (195)Pt or (199)Hg nuclei and (3)J values of 47-74 Hz (for Pt compounds) and 185-197 Hz (for Hg compounds). J values of Pt compounds are influenced both by the ligands trans to the uracil C(5) position and by the number of metal entities bound to a uracil ring. Both 2 and 5 were X-ray structurally characterized. 2: monoclinic system, space group P2(1)/c, a = 15.736(6) ?, b = 11.481(6) ?, c = 25.655 (10) ?, beta = 145.55(3) degrees, V = 2621.9(28) ?(3), Z = 4. 5: monoclinic system, space group P2(1)/c, a = 4.905(2) ?, b = 18.451(6) ?, c = 11.801(5) ?, beta = 94.47(3) degrees, V = 1064.77(72) ?(3), Z = 4.  相似文献   

20.
Treatment of the bmnpa (N,N-bis-2-(methylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine) ligand with equimolar amounts of Cd(ClO(4))(2).5H(2)O and Me(4)NOH.5H(2)O in CH(3)CN yielded the binuclear cadmium hydroxide complex [((bmnpa)Cd)(2)(mu-OH)(2)](ClO(4))(2).CH(3)CN (1). Complex 1 may also be prepared (a) by treatment of a CH(3)CN solution of (bmnpa)Cd(ClO(4))(2) (2) with 1 equiv of n-BuLi, followed by treatment with water or (b) from 2 in the presence of 1 equiv each of water and NEt(3). The hydroxide derivative 1 is not produced from 2 and water in the absence of an added base. Complex 1 possesses a binuclear structure in the solid state with hydrogen-bonding and CH/pi interactions involving the bmnpa ligand. The overall structural features of 1 differ from the halide derivative [((bmnpa)Cd)(2)(mu-Cl)(2)](ClO(4))(2) (3), particularly in that the Cd(2)(mu-OH)(2) core of 1 is symmetric whereas the Cd(2)(mu-Cl)(2) core of 3 is asymmetric. In acetonitrile solution, 1 behaves as a 1:2 electrolyte and retains a binuclear structure and secondary hydrogen-bonding and CH/pi interactions, whereas 3 is a 1:1 electrolyte, indicating formation of a mononuclear [(bmnpa)CdCl]ClO(4) species in solution. Treatment of 1 with CO(2) in anhydrous CH(3)CN yields the bridging carbonate complex [((bmnpa)Cd)(2)(mu-CO(3))](ClO(4))(2).CH(3)CN (4). Treatment of a chemically similar zinc hydroxide complex, [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2) (benpa = N,N-bis-2-(ethylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine, with CO(2) also results in the formation of a carbonate derivative, [((benpa)Zn)(2)(mu-CO(3))](ClO(4))(2) (5), albeit the coordination mode of the bridging carbonate moiety is different. Treatment of 4 with added water results in no reaction, whereas 5 under identical conditions will undergo reaction to yield the zinc hydroxide complex [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号