首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文根据RI-UMP2方法、TZVPP基组和BSSE校正计算得到的能量数据,推导了描述氢分子与含有不饱和配位键的Cu的金属羧酸配合物相互作用的分子力学力场. 用巨正则系综蒙特卡洛模拟(GCMC)计算了氢在含四方形配位Cu的MOFs材料上的吸附等温线. 通过对比CuBTC的实验吸附数据发现,虽然理论预测含有四方形配位Cu的MOFs具有比含有四面体配位Zn的MOFs与氢分子更强的相互作用,实验合成得到的材料尚未反映这一区别. 以现有的CuBTC实验数据为参照消除理论计算和实验测定的系统偏差,预测了3种含有四方形配位Cu的MOFs材料以CuBTC作为参照的储氢能力.  相似文献   

2.
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring.  相似文献   

3.
An efficient approach is described for using accurate ab initio calculations to determine the rates of elementary condensation and evaporation processes that lead to nucleation of aqueous aerosols. The feasibility of the method is demonstrated in an application to evaporation rates of water dimer at 230 K. The method, known as ABC-FEP (ab initio/classical free energy perturbation), begins with a calculation of the potential of mean force for the dissociation (evaporation) of small water clusters using a molecular dynamics (MD) simulation with a model potential. The free energy perturbation is used to calculate how changing from the model potential to a potential calculated from ab initio methods would alter the potential of mean force. The difference in free energy is the Boltzmann-weighted average of the difference between the ab initio and classical potential energies, with the average taken over a sample of configurations from the MD simulation. In principle, the method does not require a highly accurate model potential, though more accurate potentials require fewer configurations to achieve a small sampling error in the free energy perturbation step. To test the feasibility of obtaining accurate potentials of mean force from ab initio calculations at a modest number of configurations, the free energy perturbation method has been used to correct the errors when some standard models for bulk water (SPC, TIP4P, and TIP4PFQ) are applied to water dimer. To allow a thorough exploration of sampling issues, a highly accurate fit to results of accurate ab initio calculations, known as SAPT-5s, as been used a proxy for the ab initio calculations. It is shown that accurate values for a point on the potential of mean force can be obtained from any of the water models using ab initio calculations at only 50 configurations. Thus, this method allows accurate simulations of small clusters without the need to develop water models specifically for clusters.  相似文献   

4.
It is demonstrated that many-body force field models based solely on pairwise Coulomb screening cannot simultaneously reproduce both gas-phase and condensed-phase polarizability limits. Several many-body force field model forms are tested and compared with basis set-corrected ab initio results for a series of bifurcated water chains. Models are parameterized to reproduce the ab initio polarizability of an isolated water molecule, and pairwise damping functions are set to reproduce the polarizability of a water dimer as a function of dimer separation. When these models are applied to extended water chains, the polarization is over-predicted, and this over-polarization increased as a function of the overlap of molecular orbitals as the chains are compressed. This suggests that polarizable models based solely on pairwise Coulomb screening have some limitations, and that coupling with non-classical many-body effects, in particular exchange terms, may be important.  相似文献   

5.
We report benchmark calculations of the density functional based tight-binding method concerning the magnetic properties of small iron clusters (Fe2 to Fe5) and the Fe13 icosahedron. Energetics and stability with respect to changes of cluster geometry of collinear and noncollinear spin configurations are in good agreement with ab initio results. The inclusion of spin-orbit coupling has been tested for the iron dimer.  相似文献   

6.
This article presents a new ab initio force field for the cofactors of bacterial photosynthesis, namely quinones and bacteriochlorophylls. The parameters has been designed to be suitable for molecular dynamics simulations of photosynthetic proteins by being compatible with the AMBER force field. To our knowledge, this is the first force field for photosynthetic cofactors based on a reliable set of ab initio density functional reference data for methyl bacteriochlorophyll a, methyl bacteriopheophytin a, and of a derivative of ubiquinone. Indeed, the new molecular mechanics force field is able to reproduce very well not only the experimental and ab initio structural properties and the vibrational spectra of the molecules, but also the eigenvectors of the molecular normal modes. For this reason it might also be helpful to understand vibrational spectroscopy results obtained on reaction center proteins.  相似文献   

7.
Infrared spectra simulations require ab initio techniques to get reliable intensities. On the other hand, recent force fields can provide accurate molecular geometries and frequencies. Therefore, it is suggested that these new force fields could be used to simulate infrared spectra, dipole-moment surfaces being described at high levels of theory in order to get satisfactory intensities. As pointed out, for a system with N atoms, the cost of such a simulation would be reduced N-fold with respect to standard quantum approaches. Preliminary calculations based on this scheme are reported here. Encouraging results are obtained since no significant lost of accuracy is noted on going from the ab initio to the molecular mechanics potential energy surface. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 705–711, 1998  相似文献   

8.
The free energy landscapes of peptide conformations were calibrated by ab initio quantum chemical calculations, after the enhanced conformational diversity search using the multicanonical molecular dynamics simulations. Three different potentials of mean force for an isolated dipeptide were individually obtained by the multicanonical molecular dynamics simulations using the conventional force fields, AMBER parm94, AMBER parm96, and CHARMm22. Each potential of mean force was then calibrated based upon the umbrella sampling algorithm from the adiabatic energy map that was calculated separately by the ab initio molecular orbital method, and all of the calibrated potentials of mean force coincided well. The calibration method was also applied to the simulations of a peptide dimer in explicit water models, and it was shown that the calibrated free energy landscapes did not depend on the force field used in the classical simulations, as far as the conformational space was sampled well. The current calibration method fuses the classical free energy calculation with the quantum chemical calculation, and it should generally make simulations for biomolecular systems much more reliable when combining with enhanced conformational sampling.  相似文献   

9.
Molecular mechanics (MM2) parameters for silanes which have a Si-C-Cl fragment have been developed based on available experimental data and ab initio molecular orbital (MO) calculations. Molecular properties, mainly rotational barriers and geometries, of α-chlorosilanes have been studied using our new MM2 parameter set. Changes in the Si-C bond lengths and several bond angles of α-chlorosilanes due to the additional attachment of polar atom(s) have been investigated utilizing ab initio calculations. An electronegativity correction to both bond lengths and angles helps MM2 to reproduce results from ab initio calculations. The new force field has been applied to the conformational analysis of l-(chloromethyl)-1,2-dimethylsilacyclopentane, a model used in our studies of rearrangements of α-halosilanes.  相似文献   

10.
A method using linear combinations of successive eigenvectors based on energy minimization is presented for converging self-consistent-field iterations. It is applied to a number of divergent or poorly convergent examples in semi-empirical CNDO, INDO, and ab initio STO-3G calculations. The CNDO/2 results are compared with those obtained by the level-shifting and damping techniques.  相似文献   

11.
We present a hierarchical construction scheme for accurate ab initio potential energy surface generation. The scheme is based on the observation that when molecular configuration changes, the variation in the potential energy difference between different ab initio methods is much smaller than the variation for potential energy itself. This means that it is easier to numerically represent energy difference to achieve a desired accuracy. Because the computational cost for ab initio calculations increases very rapidly with the accuracy, one can gain substantial saving in computational time by constructing a high accurate potential energy surface as a sum of a low accurate surface based on extensive ab initio data points and an energy difference surface for high and low accuracy ab initio methods based on much fewer data points. The new scheme was applied to construct an accurate ground potential energy surface for the FH(2) system using the coupled-cluster method and a very large basis set. The constructed potential energy surface is found to be more accurate on describing the resonance states in the FH(2) and FHD systems than the existing surfaces.  相似文献   

12.
13C NMR spectroscopy, ab initio quantum mechanics, and molecular mechanics have been used to investigate the trans-4-(trifluoromethyl)-2,2,6-trimethyl-1,3-dioxane chair/twist-boat equilibrium. The molecular mechanics calculations were based upon the MM3 and AMBER force fields. A 6-31G basis set was used for the ab initio calculations, and MP2 correlation corrections were applied. Both the ab initio and AMBER molecular mechanics calculations are consistent with the (13)C NMR chemical shift differences for the trans-4-(trifluoromethyl)-2,2,6-trimethyl-1,3-dioxane conformers. The predicted chair to twist-boat equilibrium suggested by the MM3 calculations is not consistent with the experimental data. These results support the suggestion by Howard et al. (Howard, A. E.; Cieplak, P.; Kollman, P. A. J. Comput.Chem. 1995, 16, 243-261) on the critical role of electrostatic interactions in determining the chair/twist-boat equilibrium.  相似文献   

13.
In a recent work [Giese and York J. Chem. Phys. 120, 9903 (2004)] showed that many-body force field models based solely on pairwise Coulomb screening cannot simultaneously reproduce both gas-phase and condensed-phase polarizability limits. In particular, polarizable force fields applied to bifurcated water chains have been demonstrated to be overpolarized with respect to ab initio methods. This behavior was ascribed to the neglect of coupling between many-body exchange and polarization. In the present article we reproduce those results using different ab initio levels of theory and a polarizable model based on the chemical-potential equalization principle. Moreover we show that, when hydrogen-bond (H-bond) forming systems are considered, an additional nonclassical effect, i.e., intermolecular charge transfer, must be taken into account. Such effect, contrarily to that of coupling between many-body exchange and polarization, makes classical polarizable force fields underpolarized. In the case of water at standard conditions, being H-bonded geometries much more probable than the bifurcated ones, intermolecular charge transfer is the dominant effect.  相似文献   

14.
Ab initio based polarizable force field parametrization   总被引:1,自引:0,他引:1  
Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by approximately 30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.  相似文献   

15.
16.
《Chemical physics letters》2001,331(1-2):128-134
We propose a computational strategy within the full quantum embedded cluster methodology for modeling reactivity in extended systems. This method takes advantages of the embedded cluster methodology for treating interactions in the active region accurately while allowing interactions with the remaining crystal framework to be treated fully quantum mechanically by using the ab initio tight-binding theory. We have applied this method to study proton siting in chabazite. We found that our calculated relative stability of proton at four different oxygen sites agree well with those from previously periodic calculations, though the computational demand for the present approach is much less.  相似文献   

17.
Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.  相似文献   

18.
Self-consistent charge density functional tight-binding (SCC-DFTB) is a semiempirical method based on density functional theory and has in many cases been shown to provide relative energies and geometries comparable in accuracy to full DFT or ab initio MP2 calculations using large basis sets. This article shows an implementation of the SCC-DFTB method as part of the new QM/MM support in the AMBER 9 molecular dynamics program suite. Details of the implementation and examples of applications are shown.  相似文献   

19.
The molecular structures of the two lowest-energy conformers of proline, Pro-I and Pro-II, have been characterized by ab initio electronic structure computations. An extensive MP2/6-31G* quartic force field for Pro-I, containing 62,835 unique elements in the internal coordinate space, was computed to account for anharmonic vibrational effects, including total zero-point contributions to isotopomeric rotational constants. New re and improved r0 least-squares structural refinements were performed to determine the heavy-atom framework of Pro-I, based on experimentally measured (A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J. C. Lopez, J. L. Alonso, Angew. Chem. 2002, 114, 4867; Angew. Chem. Int. Ed. 2002, 41, 4673) rotational constant sets of nine isotopomers and our ab initio data for structural constraints and zero-point vibrational (ZPV) shifts. Without the ab initio constraints, even the extensive set of empirical rotational constants cannot satisfactorily fix the molecular structure of the most stable conformer of proline, a 17-atom molecule with no symmetry. After imposing the ab initio constraints, excellent agreement between theory and experiment is found for the heavy-atom geometric framework, the root-mean-square (rms) residual of the empirical rotational constant fit being cut in half by adding ZPV corrections. The most significant disparity, about 0.07 A, between the empirical and the best ab initio structures, concerns the r(N...H) distance of the intramolecular hydrogen bond. Some of the experimental quartic centrifugal distortion constants assigned to Pro-II have been corrected based on data obtained from a theoretical force field.  相似文献   

20.
The refinement of protein crystal structures currently involves the use of empirical restraints and force fields that are known to work well in many situations but nevertheless yield structural models with some features that are inconsistent with detailed chemical analysis and therefore warrant further improvement. Ab initio electronic structure computational methods have now advanced to the point at which they can deliver reliable results for macromolecules in realistic times using linear-scaling algorithms. The replacement of empirical force fields with ab initio methods in a final refinement stage could allow new structural features to be identified in complex structures, reduce errors and remove computational bias from structural models. In contrast to empirical approaches, ab initio refinements can only be performed on models that obey basic qualitative chemical rules, imposing constraints on the parameter space of existing refinements, and this in turn inhibits the inclusion of unlikely structural features. Here, we focus on methods for determining an appropriate ensemble of initial structural models for an ab initio X-ray refinement, modeling as an example the high-resolution single-crystal X-ray diffraction data reported for the structure of lysozyme (PDB entry “2VB1”). The AMBER force field is used in a Monte Carlo calculation to determine an ensemble of 8 structures that together embody all of the partial atomic occupancies noted in the original refinement, correlating these variations into a set of feasible chemical structures while simultaneously retaining consistency with the X-ray diffraction data. Subsequent analysis of these results strongly suggests that the occupancies in the empirically refined model are inconsistent with protein energetic considerations, thus depicting the 2VB1 structure as a deep-lying minimum in its optimized parameter space that actually embodies chemically unreasonable features. Indeed, density-functional theory calculations for one specific nitrate ion with an occupancy of 62% indicate that water replaces this ion 38% of the time, a result confirmed by subsequent crystallographic analysis. It is foreseeable that any subsequent ab initio refinement of the whole structure would need to locate a globally improved structure involving significant changes to 2VB1 which correct these identified local structural inconsistencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号