首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peak capacity is the commonly used measure of separation efficiency in gradient elution. This study focuses on the effect of column characteristics (particle size and column length) and operating parameters (gradient time and flow rate) on the peak capacity for small molecule compounds in gradient elution. The goal of this study is to develop a practical strategy to maximize the separation efficiency (i.e., peak capacity) under different constraints (analysis time or pressure limit). Using both experimental data and theoretical modeling, the current study reveals that the peak capacity increases with both gradient time and column length in a non-linear fashion. Marginal peak capacity is proposed to characterize the non-linear increase of peak capacity over the gradient time and column length. This study also attempts to understand the maximum peak capacity achievable under certain pressure limits using Neue’s peak capacity model. The results of this study provide a better understanding of the UPLC technology, and can also help to develop practical strategies to maximize the separation efficiency in gradient elution to meet the separation needs.  相似文献   

2.
在蛋白质组学研究中,多肽混合物的有效分离对蛋白质鉴定和蛋白质之间相互作用的研究起着决定性的影响。基于此,用反相液相色谱研究了在两个不同长度的色谱柱上分离多肽混合物时色谱柱长度与峰容量的关系,同时考察了梯度洗脱时间对峰容量和峰宽的影响。实验结果表明,色谱柱长度对峰容量有显著的影响,而延长梯度洗脱时间不仅可以增加峰容量,而且可以增加峰宽。这说明用毛细管液相色谱 串联质谱联用方法对多肽混合物进行分离鉴定时,采用较长的色谱柱和较长的梯度洗脱时间有利于对更多的多肽进行分析鉴定。  相似文献   

3.
The currently existing knowledge about peak capacity in unidimensional separations is reviewed. The majority of the paper is dedicated to reversed-phase gradient chromatography, covering specific techniques as well as the subject of peak compression. Other sections deal with peak capacity in isocratic chromatography, size-exclusion chromatography and ion-exchange chromatography. An important topic is the limitation of the separation power and the meaning of the concept of peak capacity for real applications.  相似文献   

4.
To obtain the best compromise between peak capacity and analysis time in one-dimensional and two-dimensional (2D) liquid chromatography (LC), column technology and operating conditions were optimized. The effects of gradient time, flow rate, column temperature, and column length were investigated in one-dimensional reversed-phase (RP) gradient nano-LC, with the aim of maximizing the peak per unit time for peptide separations. An off-line two-dimensional LC approach was developed using a micro-fractionation option of the autosampler, which allowed automatic fractionation of peptides after a first-dimension ion-exchange separation and re-injection of the fractions onto a second-dimension RP nano-LC column. Under the applied conditions, which included a preconcentration/desalting time of 5 min, and a column equilibration time of 12.5 min, the highest peak capacity per unit time in the 2D-LC mode was obtained when applying a short (10 min) first-dimension gradient and second-dimension RP gradients of 20 min duration. For separations requiring a maximum peak capacity of 375, one-dimensional LC was found to be superior to the off-line strong cation-exchange/×/RPLC approach in terms of analysis time. Although a peak capacity of 450 could be obtained in one-dimensional LC when applying 120-min gradients on 500-mm long columns packed with 3-μm particles, for separations requiring a peak capacity higher than 375 2D-LC experiments provide a higher peak capacity per unit time. Finally, the potential of off-line 2D-LC coupled to tandem mass spectrometry detection is demonstrated with the analysis of a tryptic digest of a mixture of nine proteins and an Escherichia coli digest.  相似文献   

5.
Column peak capacity was utilized as a measure of column efficiency for gradient elution conditions. Peak capacity was evaluated experimentally for reversed-phase (RP) and cation-exchange high-performance liquid chromatography (HPLC) columns, and compared to the values predicted from RP-HPLC gradient theory. The model was found to be useful for the prediction of peak capacity and productivity in single- and two-dimensional (2D) chromatography. Both theoretical prediction and experimental data suggest that the number of peaks separated in HPLC reaches an upper limit, despite using highly efficient columns or very shallow gradients. The practical peak capacity value is about several hundred for state-of-the-art RP-HPLC columns. Doubling the column length (efficiency) improves the peak capacity by only 40%, and proportionally increases both the separation time and the backpressure. Similarly, extremely shallow gradients have a positive effect on the peak capacity, but analysis becomes unacceptably long. The model predicts that a 2D-HPLC peak capacity of 15,000 can be achieved in 8 h using multiple fraction collection in the first dimension followed by fast RP-HPLC gradients employing short, but efficient columns in the second dimension.  相似文献   

6.
A novel graphical method for assessing the compromise between conditional peak capacity and separation speed for packed bed columns under gradient conditions has been developed and applied to the separation of peptides. This approach is analogous to and complements the conventional "Poppe plot" used to study plate count in isocratic separations. The use of the new plot can assist the design of appropriate column formats (e.g. particle size and column length) for both dimensions in gradient elution two-dimensional liquid chromatography (2DLC). Particularly for the second dimension of 2DLC, we find that smaller particles provide faster separations even though fast separations based on particles smaller than 2 microm are practically limited by the required miniscule column length. We also find that high temperatures strongly enhance the kinetics of peak capacity production whereas higher pressures help achieve larger absolute peak capacities albeit at the cost of longer analysis time.  相似文献   

7.
Reversed-phase liquid chromatography is the most commonly used separation method for shotgun proteomics. Nanoflow chromatography has emerged as the preferred chromatography method for its increased sensitivity and separation. Despite its common use, there are a wide range of parameters and conditions used across research groups. These parameters have an effect on the quality of the chromatographic separation, which is critical to maximizing the number of peptide identifications and minimizing ion suppression. Here we examined the relationship between column lengths, gradient lengths, peptide identifications, and peptide peak capacity. We found that while longer column and gradient lengths generally increase peptide identifications, the degree of improvement is dependent on both parameters and is diminished at longer column and gradients. Peak capacity, in comparison, showed a more linear increase with column and gradient lengths. We discuss the discrepancy between these two results and some of the considerations that should be taken into account when deciding on the chromatographic conditions for a proteomics experiment.
Figure
The effects of column and gradient lengths on the performance of nanoflow LC-MS/MS is examined in complex proteomic samples.  相似文献   

8.
In this work we develop a practical approach to optimization in comprehensive two dimensional liquid chromatography (LC x LC) which incorporates the important under-sampling correction and is based on the previously developed gradient implementation of the Poppe approach to optimizing peak capacity. The Poppe method allows the determination of the column length, flow rate as well as initial and final eluent compositions that maximize the peak capacity at a given gradient time. It was assumed that gradient elution is applied in both dimensions and that various practical constraints are imposed on both the initial and final mobile phase composition in the first dimension separation. It was convenient to consider four different classes of solute sets differing in their retention properties. The major finding of this study is that the under-sampling effect is very important and causes some unexpected results including the important counter-intuitive observation that under certain conditions the optimum effective LC x LC peak capacity is obtained when the first dimension is deliberately run under sub-optimal conditions. In addition, we found that the optimum sampling rate in this study is rather slower than reported in previous studies and that it increases with longer first dimension gradient times.  相似文献   

9.
王彦  高明霞  谷雪  张祥民 《色谱》2005,23(1):41-45
搭建了一个纳升级的二维液相色谱分离平台(nano-2D-LC),该平台可以自动完成进样、除盐、分离及鉴定。以离子交换色谱(SCX)为第一维,反相液相色谱(RPLC)为第二维,对鼠肝组织的蛋白质组进行了研究。SCX采用阶梯式洗脱,RPLC运用线性梯度洗脱,以200 nL/min的速度进行分离,峰容量可达620。  相似文献   

10.
An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 °C a small C-term effect was observed in a flow rate range of 1–4 μL/min. However, the C-term effect on peak width is not as strong as the decrease in peak width due to increasing flow rate. The peak capacity increased according to the square root of the column length. Decreasing the macropore size of the polymer monolith while maintaining the column length constant, resulted in an increase in peak capacity. A trade-off between peak capacity and total analysis time was made for 50, 100, and 250 mm long monolithic columns and a microparticulate column packed with 5 μm porous silica particles while operating at a flow rate of 2 μL/min. The peak capacity per unit time of the 50 mm long monolithic column with small pore size was superior when the total analysis time is below 120 min, yielding a maximum peak capacity of 380. For more demanding separations the 250 mm long monolith provided the highest peak capacity in the shortest possible time frame.  相似文献   

11.
A gradient kinetic plot method is used for theoretical characterisation of the performance of polymeric particulate anion exchange columns for gradient separations of small inorganic anions. The method employed requires only information obtained from a series of isocratic column performance measurements and in silico predictions of retention time and peak width under gradient conditions. Results obtained under practically constrained conditions provide parameters for the generation of high peak capacities and rapid peak production for fast analysis to be determined. Using this prediction method, a maximum theoretical peak capacity of 84 could be used to achieve separation of 26 components using a 120 min gradient (Rs > 1). This approach provides a highly convenient tool for development of both mono- and multidimensional ion chromatography (IC) methodologies as it yields comprehensive understanding of the influence of gradient slope, analysis time, column length and temperature upon kinetically optimised gradient performance.  相似文献   

12.
Comprehensive two-dimensional liquid chromatography (LC?×?LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC?×?LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC?×?LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7 %. The effective peak distribution area increased significantly, which produced better separation.  相似文献   

13.
吴漪  王彦  谷雪  张琳  阎超 《色谱》2010,28(3):226-230
加压毛细管电色谱(pCEC)具有电泳和液相色谱的双重分离机理,其柱效高、选择性强、分辨率高和分离速度快并可进行梯度洗脱。我们在此基础上加入离子交换色谱模式,构建了强阳离子交换-反相加压毛细管液相色谱(micro strong cation exchange liquid chromatography/reversed phase pressurized capillary electrochromatography, μ-SCXLC/RP-pCEC)二维系统,并对中药黄柏的提取物进行了优化分离。第一维μ-SCXLC采用线性盐梯度分离,样品被切割成11个馏分洗脱收集后进入第二维,第二维脱盐后,采用RP-pCEC进行分离分析,梯度洗脱。以中药黄柏提取物为样品,此二维系统的分辨率和峰容量都较一维系统有很大提高,理论峰容量可达900左右,证明构建的二维体系非常适合复杂样品的分离分析。  相似文献   

14.
Optimal liquid chromatography/mass spectrometric [LC/MS(/MS)] analysis depends on both the LC selectivity and the electrospray efficiency. Here, we outline a simple and comprehensive LC/MS/MS strategy for the rapid analysis of a wide range of pharmaceutical compounds. To achieve ultrafast LC separation with little sacrifice in peak capacity, one needs to start with a column that provides a good peak capacity at short gradient run times; secondly, it is important to use high flow rates to achieve a good gradient peak capacity. Following this strategy, it was possible to baseline-resolve a mixture (containing acidic, neutral, and basic pharmaceutical analytes) in seconds. By coupling the selectivity provided by fast LC separation with the specificity of MS/MS detection, it is possible to separate and identify a wide range of analytes in 1-min gradient analyses. Also, the impact of mobile phase pH on both the chromatographic selectivity and the MS/MS sensitivity is demonstrated.  相似文献   

15.
Maximization of peak capacity is a very important step in developing one-dimensional separations of complex samples. In recent work, it was shown that the use of small particles in combination with the new technique of ultrahigh pressure liquid chromatography (UHPLC) was able to generate very high peak capacities. Here we show the ability of conventional HPLC instrumentation to give comparable peak capacities to those obtained in UHPLC for the important case of complex mixtures of peptides but at much lower pressures by using a 60 cm long set of columns packed with 5 microm pellicular (superficially porous) particles. We first show, in complete agreement with the well known results of the theory of isocratic separations that, when time is not limiting, the best peak capacities in gradient elution chromatography are obtained by using large particles and the longest column that can be operated at the pump's pressure limit. Two different types of 5 microm particles (superficially porous and totally porous) were compared for their efficiency in gradient chromatography of peptides. We find that the pellicular material gave about 50% higher peak capacity compared to the analogous porous material. A 60 cm column set packed with pellicular particles was made by connecting short columns in series; a peak capacity of about 460 was obtained in 4 h at room temperature. Increasing the column temperature to 70 degrees C reduced the analysis time to 2 h and further increased the peak capacity to more than 500. The number of peaks observed in the separation of bovine serum albumin tryptic peptides was greatly increased and the separation quality was significantly improved.  相似文献   

16.
The separation of the enantiomers of 1-phenyl-1-propanol by supercritical fluid chromatography on a chiral stationary phase, which consists of cellulose tris (3,5-dimethylphenylcarbamate) coated on a silica support (Chiralcel-OD), is studied under overloaded, non-linear chromatographic conditions. Pulse experiments are performed at a temperature of 30 degrees C using supercritical CO(2) modified with methanol as a mobile phase. The parameters of the binary Langmuir adsorption isotherm are determined by the inverse method, comparing experimental and simulated peak responses. Isotherm parameters are derived for modifier concentrations between 1 and 5% (w/w) and operating pressures between 125 and 185 bar, and the dependency of the isotherm parameters, namely the Henry constant and the saturation capacity, on operating conditions is investigated.  相似文献   

17.
Reversed-phase ultra-performance liquid chromatography was used for biopolymer separations in isocratic and gradient mode. The gradient elution mode was employed to estimate the optimal mobile phase flow rate to obtain the best column efficiency and the peak capacity for three classes of analytes: peptides, oligonucleotides and proteins. The results indicate that the flow rate of the Van Deemter optimum for 2.1 mm I.D. columns packed with a porous 1.7 microm C18 sorbent is below 0.2 mL/min for our analytes. However, the maximum peak capacity is achieved at flow rates between 0.15 and 1.0 mL/min, depending on the molecular weight of the analyte. The isocratic separation mode was utilized to measure the dependence of the retention factor on the mobile phase composition. Constants derived from isocratic experiments were utilized in a mathematical model based on gradient theory. Column peak capacity was predicted as a function of flow rate, gradient slope and column length. Predicted peak capacity trends were compared to experimental results.  相似文献   

18.
A fast ion chromatographic system is described which uses shorter column lengths and compares various eluent profiles in order to maximise the performance without sacrificing the chromatographic resolution. Both isocratic and gradient elution profiles were considered to find the most efficient mode of separation. The separation and determination of seven target anions (chloride, chlorate, nitrate, chromate, sulfate, thiocyanate and perchlorate) was achieved using a short (4 mm ID, 50 mm long) column packed with Dionex AS20 high-capacity anion exchange material. A hydroxide eluent was used at an initial concentration of 25 mM (at a flow-rate of 1.0 mL/min) and two performance maxima were found. The maximum efficiency occurred at a normalised gradient ramp rate of 5 mM/t0, resulting in a peak capacity of 16, while the fastest separation (<3 min) occurred at a normalised ramp rate of 30 mM/t0. The retention time, peak width and resolution using the different eluent profiles on varying column lengths is also compared. Further investigations in this study determined that the highest peak capacity separation under gradient conditions could be approximated using an isocratic separation. The advantage of using this novel approach to approximate the maximum efficiency separation removes the need for column re-equilibration that is required for gradient elution resulting in faster analyses and enhanced sample throughput, with benefits in particular for multidimensional chromatography.  相似文献   

19.
Comprehensive two-dimensional liquid chromatography (2DLC) offers a number of practical advantages over optimized one-dimensional LC in peak capacity and thus in resolving power. The traditional “product rule” for overall peak capacity for a 2DLC system significantly overestimates peak capacity because it neglects under-sampling of the first dimension separation. Here we expand on previous work by more closely examining the effects of the first dimension peak capacity and gradient time, and the second dimension cycle times on the overall peak capacity of the 2DLC system. We also examine the effects of re-equilibration time on under-sampling as measured by the under-sampling factor and the influence of molecular type (peptide vs. small molecule) on peak capacity. We show that in fast 2D separations (less than 1 h), the second dimension is more important than the first dimension in determining overall peak capacity and conclude that extreme measures to enhance the first dimension peak capacity are usually unwarranted. We also examine the influence of sample types (small molecules vs. peptides) on second dimension peak capacity and peak capacity production rates, and how the sample type influences optimum second dimension gradient and re-equilibration times.  相似文献   

20.
Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions and therefore should be used in comprehensive two-dimensional LC×LC, both in the first and in the second dimension, where, however, gradients are limited to a short time period available for separation, usually 1 min or less. Gradient conditions spanning over a broad mobile phase composition range in each second-dimension fraction analysis are used with generic "full in fraction" (FIF) gradients. "Segment in fraction" (SIF) gradients cover a limited gradient range adjusted independently to suit changing lipophilicity range of compounds transferred to the second dimension during the first-dimension gradient run and to provide regular coverage of the two-dimensional retention space. Optimization of the gradient profiles is important tool for achieving high two-dimensional peak capacity and savings of the separation time in comprehensive LC×LC. Calculations based on the well-established gradient-elution theory can be used to predict the elution times and bandwidths in fast gradients, taking into account increased probability of pre-gradient or post-gradient elution. The fraction volumes transferred into the second dimension may significantly affect the second-dimension bandwidths, especially at high elution strength of the fraction solvent, which may cause even band distortion or splitting in combined normal-phase (HILIC)-RP systems, but also in some two-dimensional RP-RP systems. In the present work, the effects of the fast gradient profile, of the sample volume and solvent on the elution time and bandwidths were investigated on a short column packed with fused-core porous-shell particles, providing narrow bandwidths and fast separations at moderate operating pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号