首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An ordered mesoporous WO(3-X) with high electrical conductivity (m-WO(3-X)) was prepared and evaluated as an anode material for lithium ion batteries (LIBs). Ordered mesoporous tungsten trioxide (m-WO(3)) with an identical pore structure to that of m-WO(3-X) and bulk WO(3-X) (b-WO(3-X)) was prepared for the comparison purpose. An m-WO(3-X) electrode exhibited a high reversible capacity (748 mAh g(-1), 6.5 Li/W) and a high volumetric capacity (~1500 mAh cm(-3)), which is comparable to the Li metal itself (ca. 2000 mAh cm(-3)). Also, an improved rate capability and a good cyclability were observed in the m-WO(3-X) electrode when compared with m-WO(3) and b-WO(3-X) electrodes. From electrochemical impedance spectroscopy (EIS) analysis, the advanced anode performance of the m-WO(3-X) electrode was probably attributed to large ordered mesopores and a high electrical conductivity. Differential scanning calorimetry (DSC) result displayed that the safety of m-WO(3-X) was more improved than those of graphite and Si anode materials.  相似文献   

2.
The effect of phenols reactivity with formaldehyde on the formation of ordered mesoporous carbons has been investigated. A strategy to accelerate the polymerization of phenolic resins by using strongly acidic conditions is proposed. The self-assembly of resorcinol-formaldehyde and block copolymers (e.g., F127) under highly acidic concentrations (e.g., 1.5 M HCl) is probably driven by the I+X-S+ mechanism and hydrogen bonding and affords a highly reproducible approach for synthesis of ordered mesoporous carbons. The synthesis can be readily scaled up with no change in sample quality. The carbon material obtained (denoted as C-ORNL-1) exhibits highly ordered hexagonal mesostructure, with a typical BET surface area of approximately 600 m2/g, pore size of 6.3 nm, and pore volume of approximately 0.60 cm3/g. One of the unique structural features of C-ORNL-1 is its high thermal stability; it can be graphitized at 2600 degrees C while considerable mesoporosity is maintained.  相似文献   

3.
Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.  相似文献   

4.
A proton-conductive material based on a crystalline assembly of trimesic acid and melamine (TMA?M, see picture) is reported. Because of the ordered structure of the assembly, the water-saturated proton conductivity for the TMA?M assembly is 5.5?S?cm(-1) , which is the highest proton conductivity measured to date. This exceptionally high conductivity and low-cost fabrication of the material make applications feasible for fuel-cell devices.  相似文献   

5.
以三嵌段共聚物为模板剂, 利用溶剂挥发法合成了具有立方相的含锆介孔氧化硅材料, 并对其结构进行了表征, 初步研究了其生成机理.  相似文献   

6.
Mesocellular carbon foam (MSU-F-C) is functionalized with hollow nanographite by a simple solution-phase method to enhance the intrapenetrating electrical percolation network. The electrical conductivity of the resulting material, denoted as MSU-F-C-G, is increased by a factor of 20.5 compared with the pristine MSU-F-C. Hollow graphite nanoparticles are well-dispersed in mesocellular carbon foam, as confirmed by transmission electron microscopy (TEM), and the d spacing of the (002) planes is 0.343 nm, which is only slightly larger than that of pure graphite (0.335 nm), suggesting a random combination of graphitic and turbostratic stacking. After nanographitic functionalization, the BET surface area and total pore volume decreased from 928 m(2) g(-1) and 1.5 cm(3) g(-1) to 394 m(2) g(-1) and 0.7 cm(3) g(-1), respectively. Thermogravimetric analysis in air shows that the thermal stability of MSU-F-C-G is improved relative to that of MSU-F-C, and the one-step weight loss indicates that the nanographite is homogeneously functionalized on the MSU-F-C particles. When the resulting mesocellular carbon materials are used as electrode materials for an electric double layer capacitor (EDLC), the specific capacitances (C(sp)) of the MSU-F-C and MSU-F-C-G electrodes at 4 mV s(-1) are 109 F g(-1) and 93 F g(-1), respectively. The MSU-F-C-G electrode exhibited a very high area capacitance (C(area), 23.5 μF cm(-2)) compared with that of the MSU-F-C electrode (11.7 μF cm(-2)), which is attributed to the enhanced intraparticle conductivity by the nanographitic functionalization. MSU-F-C-G exhibited high capacity retention (52%) at a very high scan rate of 512 mV s(-1), while only a 23% capacity retention at 512 mV s(-1) was observed in the case of the MSU-F-C electrode. When applied as an anode in a lithium ion battery, a significant increase in the initial efficiency (44%), high reversible discharge capacity (580 mA h g(-1)) in the lower voltage region, and a higher rate capability were observed. The high rate capability of the MSU-F-C-G electrode as charge storage was due to the low resistance derived from the nanographitic functionalization.  相似文献   

7.
The additions of two sulfur fluoride derivatives (SF(3)C(6)F(5) and SF(3)CN) to a flowing afterglow were studied by variable electron and neutral density mass spectrometry. Data collection and analysis were complicated by the high reactivity of the neutral species. Both species readily dissociatively attach thermal electrons at 300 K to yield SF(3) + X(-) (X = C(6)F(5), CN). Attachment to SF(3)C(6)F(5) also results in SF(3)(-) + C(6)F(5) as a minor product channel. The determined electron attachment rate constants were 1(-0.6) (+1) × 10(-7) cm(3) s(-1) for SF(3)C(6)F(5), a lower limit of 1 × 10(-8) cm(3) s(-1) for SF(3)CN, and 4 ± 3 × 10(-9) cm(3) s(-1) for SF(3). Mutual neutralization rate constants of C(6)F(5)(-) and CN(-) with Ar(+) at 300 K were determined to be 5.5(-1.6) (+1.0) × 10(-8) and 3.0 ± 1 × 10(-8) cm(3) s(-1), respectively.  相似文献   

8.
We report on the development and characterization of high performance supercapacitor electrodes synthesized using electrophoretic deposition of graphene, upon which the poly(pyrrole)-layer was electropolymerised. The highly capacitive electrode had a specific capacitance of 1510 F g(-1), area capacitance of 151 mF cm(-2) and volume capacitance of 151 F cm(-3) at 10 mV s(-1).  相似文献   

9.
Highly ordered mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles has been successfully synthesized. By oxidative treatment using (NH(4))(2)S(2)O(8) and H(2)SO(4) mixed solution, numerous hydrophilic groups were created in the mesopores without destroying the ordered mesostructure of CMK-3. Through the in situ reduction in Fe(3+), magnetic nanoparticles were successfully introduced into the mesopores, resulting in the multifunctional mesoporous carbon Fe-CMK-3. The obtained hybrid carbon material possesses ordered mesostructure, high Brunauer-Emmett-Teller (BET) surface area up to 1013 m(2)/g, large pore volume of about 1.16 cm(3)/g, carboxylic surface, and excellent magnetic property. When used as an adsorbent, Fe-CMK-3 exhibits excellent performances for removing toxic organic compounds from waster-water, with a high adsorption capacity, an extremely rapid adsorption rate, and an easy magnetically separable process. In the case of requiring emergency removal of large amount of organic pollutants in aqueous, the hybrid carbon adsorbent would be an ideal choice.  相似文献   

10.
A new truxene discotic liquid crystal possessing only three octyloxy chains (3C8OTRX) was studied on the mesomorphic and semiconducting properties to reveal that it exhibits a high drift mobility of positive carriers in the order of 10(-2) cm(2) V(-1) s(-1) in the hexagonal ordered columnar (Col(ho)) mesophase.  相似文献   

11.
The nature of main in-plane skeleton Raman modes (C=C and C-C stretch) of poly(3-hexylthiophene) (P3HT) in pristine and its blend thin films with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) is studied by resonant and nonresonant Raman spectroscopy and Raman simulations. Under resonant conditions, the ordered phase of P3HT with respect to its disordered phase is identified by (a) a large shift in the C=C mode peak position to lower wavenumber (~21 cm(-1) shift), (b) a narrower fwhm of the C=C mode (~9 cm(-1) narrower), (c) a larger intensity of the C-C mode relative to the C=C mode (~56% larger), and (d) a very small Raman dispersion (~5 cm(-1)) of the C=C mode. The behavior of the C=C and C-C modes of the ordered and disordered phases of P3HT can be explained in terms of different molecular conformations. The C=C mode of P3HT in P3HT:PCBM blend films can be reproduced by simple superposition of the two peaks observed in different phases of P3HT (ordered and disordered). We quantify the molecular order of P3HT after blending with PCBM and the subsequent thermal annealing to be 42 ± 5% and 94 ± 5% in terms of the fraction of ordered P3HT phase, respectively. The increased molecular order of P3HT in blends upon annealing correlates well with enhanced device performance (J(SC), -4.79 to -8.72 mA/cm(2) and PCE, 1.07% to 3.39%). We demonstrate that Raman spectroscopy (particularly under resonant conditions) is a simple and powerful technique to study molecular order of conjugated polymers and their blend films.  相似文献   

12.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

13.
We demonstrate the field-effect transistors (FETs) made of cyclo[8]pyrrole thin films prepared by the Langmuir-Blodgett (LB) method. The cyclo[8]pyrrole molecule possesses a 30-pi-electron system and narrower highest-occupied molecular orbital-lowest-unoccupied molecular orbital energy gap (0.63 eV), forms a stable, reproducible monolayer at the air-water interface, and transfers onto a substrate with a nearly unity transfer ratio and face-to-face configuration due to its strong pi-pi interaction. The LB films are uniform characterized by atomic force microscopy and in ordered form confirmed by X-ray diffraction. The FET exhibited high performances with one of the highest hole mobilities (0.68 cm2 V(-1) s(-1)) for thin-film transistors and a high on/off ratio, implying a promising material in the FET family.  相似文献   

14.
A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).  相似文献   

15.
An amorphous MnO(2)·nH(2)O/microporous carbon spheres (α-MnO(2)·nH(2)O/MCS) composite electrode material is prepared by a chemical co-precipitation method. It is observed that the amorphous MnO(2) particles are deposited on the surface of the MCS, which form a network with a uniquely developed three-dimensional open porous system containing macropores, mesopores and micropores. The electrochemical measurements reveal that the composite electrode material presents a much more stable and reversible capacitance behavior compared to the pure α-MnO(2)·nH(2)O in 1 M of Na(2)SO(4) electrolyte. The composite containing 25 wt% MCS exhibits optimal specific capacitance of 218.2 F g(-1) at 2 mV s(-1), and is still as high as 112.4 F g(-1) at 100 mV s(-1), while a drastic reduction from 197.0 F g(-1) at 2 mV s(-1) to only 40.7 F g(-1) at 100 mV s(-1) occurs for the pure α-MnO(2)·nH(2)O. The composite also shows a rather high electrode-specific capacitance of 3.13 F cm(-2) and a long cycle life. The remarkable enhancement in the electrochemical performance is mainly attributed to the microporous structure of the MCS contributing to the deposition of MnO(2) particles on the surface of the MCS, and the uniquely developed porous network of the composite facilitating the rapid transport of the electrolyte. These factors result in the high electrochemical utilization of MnO(2), a great reduction of the equivalent series resistance, and hence the relatively high and stable electrochemical behavior.  相似文献   

16.
A "teardown" method to create large mesotunnels (approximately 9 nm) on the pore walls of ordered mesoporous silicas is demonstrated by digesting the organic constituents from polymer-silicate nanocomposites. The ordered mesostructured polymer-silicate composites were first obtained via the evaporation-induced triconstituent co-assembly method by using a low-molecular-weight phenolic resin (resols) as an organic precursor; prehydrolyzed TEOS as an inorganic precursor, and triblock copolymer F127 as a template. All of organic components including F127 and phenolic resins are removed by the microwave digestion (MWD) method from mesostructured polymer-silica composites. While the removal of triblock copolymer F127 generates main pore channels, the phenolic resins can also be torn down from the pore walls, yielding mesotunnels between the channels. The resulting silica products exhibit ordered 2-D hexagonal mesostructure, large pore volume (up to 1.92 cm(3)/g), and very large pore size (up to 22.9 nm), which is even larger than their mesostructural cell parameter (14.2 nm). TEM images confirm the existence of mesotunnels on the silica pore walls. FT-IR and (29)Si solid-state NMR results reveal that these silica products have a large number of silanol groups.  相似文献   

17.
有序中孔炭的电化学储氢性能   总被引:1,自引:0,他引:1  
将蔗糖、聚环氧乙烯-聚环氧丙烯-聚环氧乙烯三嵌段共聚物和硅源构成的复合物进行预炭化、炭化和除硅处理合成出有序中孔炭, 采用XRD、TEM、HRTEM和N2吸脱附等手段对其进行表征, 并将有序中孔炭制成电极开展恒流充放电储氢性能研究. 结果显示, 具有较高比表面积(720 m2·g-1)和孔容(0.86 cm3·g-1)的有序中孔炭材料的电化学储氢容量为70.1 mAh·g-1, 高于具有相对较低比表面积(610 m2·g-1)和孔容(0.66 cm3·g-1)的有序中孔炭储氢容量(64.1 mAh·g-1). 通过与单壁碳纳米管电极(25.9 mAh·g-1)的对比, 表明有序中孔炭具有良好的电化学储氢性能和更高的电化学活性.  相似文献   

18.
Dias HV  Singh S  Flores JA 《Inorganic chemistry》2006,45(22):8859-8861
Fully fluorinated triazapentadienyl ligand [N{(C3F7)C(C6F5)N}2]- and the related [N{(C3F7)C(2-F,6-(CF3)C6H3)N}2]- have been synthesized in good yield via a convenient route and used in the isolation of three- and four-coordinate copper(I)-carbon monoxide complexes. They show fairly high nu(CO) values (>2100 cm(-1)), indicating the presence of electron-poor Cu sites. The copper(I)-ethylene adduct [N{(C3F7)C(C6F5)N}2]Cu(C2H4), featuring a three-coordinate Cu site, has also been synthesized using [N{(C3F7)C(C6F5)N}2]CuNCCH3 and C2H4.  相似文献   

19.
The melting behavior of a bacterially synthesized biodegradable polymer, poly(3-hydroxybutyrate) (PHB), was investigated by using generalized two-dimensional infrared (2D IR) correlation spectroscopy. Temperature-dependent spectral variations in the regions of the C-H stretching (3100-2850 cm(-1)), C=O stretching (1800-1680 cm(-1)), and C-O-C stretching (1320-1120 cm(-1)) bands were monitored during the melting process. The asynchronous 2D correlation spectrum for the C=O stretching band region resolved two crystalline bands at 1731 and 1723 cm(-1). The intense band at 1723 cm(-1) may be due to the highly ordered crystalline part of PHB, and the weak band at 1731 cm(-1) possibly arises from the crystalline part with a less ordered structure. These crystalline bands at 1731 and 1723 cm(-1) share asynchronous cross peaks with a band at around 1740 cm(-1) assignable to the C=O band due to the amorphous component. This observation indicates that the decreases in the crystalline components do not proceed simultaneously with the increase in the amorphous component. In the 3020-2915 cm(-1) region where bands due to the asymmetric CH3 stretching and antisymmetric CH2 stretching modes are expected to appear, eight bands are identified at 3007, 2995, 2985, 2975, 2967, 2938, 2934, and 2929 cm(-1). The bands at 2985 and 2938 cm(-1) are ascribed to the amorphous part while the rest come from crystal field splitting, which is a characteristic of polymers with a helical structure.  相似文献   

20.
Silicon carbide (SiC) films have been used frequently for high-frequency and powder devices but have seldom been applied as the electrode material. In this paper, we have investigated the electrochemical properties of the nanocrystalline 3C-SiC film in detail. A film with grain sizes of 5 to 20 nm shows a surface roughness of about 30 nm. The resistivity of the film is in the range of 3.5-6.2 kΩ cm. In 0.1 M H(2)SO(4) solution, the film has a double-layer capacitance of 30-35 μF cm(-2) and a potential window of 3.0 V if an absolute current density of 0.1 mA cm(-2) is defined as the threshold. Its electrochemical activity was examined by using redox probes of [Ru(NH(3))(6)](2+/3+) and [Fe(CN)(6)](3-/4-) in aqueous solutions and by using redox probes of quinone and ferrocene in nonaqueous solutions. Diffusion-controlled, quasi-reversible electrode processes were achieved in four cases. The surface chemistry of the nanocrystalline 3C-SiC film was studied by electrochemical grafting with 4-nitrobenzenediazonium salts. The grafting was confirmed by time-of-flight secondary ion mass spectroscopy. All these results confirm that the nanocrystalline 3C-SiC film is promising for use as an electrode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号