首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use the pair-product approximation to the complex-time quantum mechanical propagator to obtain accurate quantum mechanical results for the symmetrized velocity autocorrelation function of a Lennard-Jones fluid at two points on the thermodynamic phase diagram. A variety of tests are performed to determine the accuracy of the method and understand its breakdown at longer times. We report quantitative results for the initial 0.3 ps of the dynamics, a time at which the correlation function has decayed to approximately one fifth of its initial value.  相似文献   

2.
In this paper, we examine how and when quantum evolution can be approximated in terms of (generalized) classical dynamics in calculations of correlation functions, with a focus on the symmetrized time correlation function introduced by Schofield. To that end, this function is expressed as a path integral in complex time and written in terms of sum and difference path variables. Taylor series expansion of the path integral's exponent to first and second order in the difference variables leads to two original developments. The first order expansion is used to obtain a simple, path integral based, derivation of the so-called Schofield's quantum correction factor. The second order result is employed to show how quantum mechanical delocalization manifests itself in the approximation of the correlation function and hinders, even in the semiclassical limit, the interpretation of the propagators in terms of sets of guiding classical trajectories dressed with appropriate weights.  相似文献   

3.
We consider the calculation of quantum mechanical rate constants for chemical reactions via algorithms that utilize short-time values of the symmetrized flux-flux correlation function. We argue that the dividing surface that makes optimal use of the short-time quantum information is the surface that minimizes the value at the origin of the symmetrized flux-flux correlation function. We also demonstrate that, in the classical limit, this quantum variational criterion produces the same dividing surface as Wigner's variational principle. Finally, we argue that the quantum variational criterion behaves in a nearly optimal fashion with respect to the minimization of the extent of re-crossing flux.  相似文献   

4.
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.  相似文献   

5.
The previously introduced method of evaluating quantum mechanical time correlation functions using as input only classical simulation data is generalized and applied to two anharmonic model systems, as a further test. The quantum correction approach utilizes the relation between a general quantum correlation function and its classical analog. For the tested models, we obtain numerical results of nonlinear correlation functions with comparable accuracy to that of the centroid molecular dynamics method, although the present method is much simpler to implement and not limited to real valued quantum correlation functions.  相似文献   

6.
The linearized approximation to the semiclassical initial value representation (LSC-IVR) is used to calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is approximate. Some of the correlation functions involve only linear operators, and others involve nonlinear operators. The consistency of the results obtained with the various time correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic systems. The good agreement of the results obtained from different correlation functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, and their semiquantitative agreement with the inelastic neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation functions.  相似文献   

7.
The recently introduced approximate many-body quantum simulation method, ring polymer molecular dynamics (RPMD), is compared to the centroid molecular dynamics method (CMD). Comparisons of simulation results for liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point are presented. The calculated quantum correlation functions for the two methods are shown to be in good agreement with one another for a large portion of the time spectrum. However, as the quantum mechanical nature of the system increases, RPMD is less accurate in predicting the kinetic energy of the system than is CMD. A simplified and highly efficient algorithm is proposed which largely corrects this deficiency.  相似文献   

8.
9.
We study a very simple method to incorporate quantum-mechanical symmetries, including the permutational symmetry on an equal footing with spatial symmetries, into the semiclassical calculation of correlation functions. This method is applied to the calculation of energy spectra to verify its validity by reproducing quantum energy levels for systems of bosons (symmetrized) and fermions (antisymmetrized). The mechanism of how the phase-space structure of classical dynamics is linked with the relevant quantum symmetry is discussed.  相似文献   

10.
A new method, here called thermal Gaussian molecular dynamics (TGMD), for simulating the dynamics of quantum many-body systems has recently been introduced [I. Georgescu and V. A. Mandelshtam, Phys. Rev. B 82, 094305 (2010)]. As in the centroid molecular dynamics (CMD), in TGMD the N-body quantum system is mapped to an N-body classical system. The associated both effective Hamiltonian and effective force are computed within the variational Gaussian wave-packet approximation. The TGMD is exact for the high-temperature limit, accurate for short times, and preserves the quantum canonical distribution. For a harmonic potential and any form of operator A?, it provides exact time correlation functions C(AB)(t) at least for the case of B, a linear combination of the position, x, and momentum, p, operators. While conceptually similar to CMD and other quantum molecular dynamics approaches, the great advantage of TGMD is its computational efficiency. We introduce the many-body implementation and demonstrate it on the benchmark problem of calculating the velocity time auto-correlation function for liquid para-hydrogen, using a system of up to N = 2592 particles.  相似文献   

11.
Forward-backward trajectory formulations of time correlation functions are reviewed. Combination of the forward and reverse time evolution operators within the time-dependent semiclassical approximation minimizes phase cancellation, giving rise to an efficient methodology for simulating the dynamics of low-temperature fluids. A quantum mechanical version of the forward-backward formulation, based on the hydrodynamic formulation of time-dependent quantum mechanics, is also available but is practical only for small systems.  相似文献   

12.
We examine the short-time accuracy of a class of approximate quantum dynamical techniques that includes the centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD) methods. Both of these methods are based on the path integral molecular dynamics (PIMD) technique for calculating the exact static equilibrium properties of quantum mechanical systems. For Kubo-transformed real-time correlation functions involving operators that are linear functions of positions or momenta, the RPMD and (adiabatic) CMD approximations differ only in the choice of the artificial mass matrix of the system of ring polymer beads that is employed in PIMD. The obvious ansatz for a general method of this type is therefore to regard the elements of the PIMD (or Parrinello-Rahman) mass matrix as an adjustable set of parameters that can be chosen to improve the accuracy of the resulting approximation. We show here that this ansatz leads uniquely to the RPMD approximation when the criterion that is used to select the mass matrix is the short-time accuracy of the Kubo-transformed correlation function. In particular, we show that the leading error in the RPMD position autocorrelation function is O(t(8)) and the error in the velocity autocorrelation function is O(t(6)), for a general anharmonic potential. The corresponding errors in the CMD approximation are O(t(6)) and O(t(4)), respectively.  相似文献   

13.
The correlation function for density fluctuations in a monatomic fluid obeys a formally exact kinetic equation containing a memory function. A previously derived short time approximation (STA) for this memory function is tested by comparing its predictions with the results of molecular dynamic simulations of a dense Lennard-Jones fluid at a variety of temperatures. This approximation takes into account the contribution to the correlation function of uncorrelated repulsive binary collisions. The qualitative changes of predicted correlation functions with temperature and wave vector are generally correct. The major exception to this is the transverse current correlation function for small wave vector. The quantitative accuracy is better at short times than long times and better at high temperatures than low temperatures. The major failing of the STA is its underestimation of the amplitudes of the negative dips in the current autocorrelation functions and of the temperature dependence of the amplitudes of the dips. Despite its deficiencies in predicting the time dependence of current correlation functions, the STA gives accurate results for the self-diffusion coefficient and the shear viscosity coefficient at the highest temperatures studied.  相似文献   

14.
Two semiclassical, initial value representation (IVR) treatments are presented for the correlation function psi(f) e-iHt/h psi(i), where psi(i) and psi(f), are energy eigenfunctions of a "zero-order" Hamiltonian describing an arbitrary, integrable, vibrational system. These wave functions are treated semiclassically so that quantum calculations and numerical integrations over these states are unnecessary. While one of the new approximations describes the correlation function as an integral over all phase space variables of the system, in a manner similar to most existing IVR treatments, the second approximation describes the correlation function as an integral over only half of the phase space variables (i.e., the angle variables for the initial system). The relationship of these treatments to the conventional Herman-Kluk approximation for correlation functions is discussed. The accuracy and convergence of these treatments are tested by calculations of absorption spectra for model systems having up to 18 degrees of freedom, using Monte Carlo techniques to perform the multidimensional phase space integrations. Both treatments are found to be capable of producing spectra of excited, anharmonic states that agree well with quantum results. Although generally less accurate than full phase space or Herman-Kluk treatments, the half phase space method is found to require far fewer trajectories to achieve convergence. In addition, this number is observed to increase much more slowly with the system size than it does for the former methods, making the half-phase space technique a very promising method for the treatment of large systems.  相似文献   

15.
16.
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.  相似文献   

17.
The maximum entropy analytic continuation (MEAC) and ring polymer molecular dynamics (RPMD) methods provide complementary approaches to the calculation of real time quantum correlation functions. RPMD becomes exact in the high temperature limit, where the thermal time betavariant Planck's over 2pi tends to zero and the ring polymer collapses to a single classical bead. MEAC becomes most reliable at low temperatures, where betavariant Planck's over 2pi exceeds the correlation time of interest and the numerical imaginary time correlation function contains essentially all of the information that is needed to recover the real time dynamics. We show here that this situation can be exploited by combining the two methods to give an improved approximation that is better than either of its parts. In particular, the MEAC method provides an ideal way to impose exact moment (or sum rule) constraints on a prior RPMD spectrum. The resulting scheme is shown to provide a practical solution to the "nonlinear operator problem" of RPMD, and to give good agreement with recent exact results for the short-time velocity autocorrelation function of liquid parahydrogen. Moreover these improvements are obtained with little extra effort, because the imaginary time correlation function that is used in the MEAC procedure can be computed at the same time as the RPMD approximation to the real time correlation function. However, there are still some problems involving long-time dynamics for which the RPMD+MEAC combination is inadequate, as we illustrate with an example application to the collective density fluctuations in liquid orthodeuterium.  相似文献   

18.
A recently formulated continuum limit semiclassical initial value series representation (SCIVR) of the quantum dynamics of dissipative systems is applied to the study of vibrational relaxation of model harmonic and anharmonic oscillator systems. As is well known, the classical dynamics of dissipative systems may be described in terms of a generalized Langevin equation. The continuum limit SCIVR uses the Langevin trajectories as input, albeit with a quantum noise rather than a classical noise. Combining this development with the forward-backward form of the prefactor-free propagator leads to a tractable scheme for computing quantum thermal correlation functions. Here we present the first implementation of this continuum limit SCIVR series method to study two model problems of vibrational relaxation. Simulations of the dissipative harmonic oscillator system over a wide range of parameters demonstrate that at most only the first two terms in the SCIVR series are needed for convergence of the correlation function. The methodology is then applied to the vibrational relaxation of a dissipative Morse oscillator. Here, too, the SCIVR series converges rapidly as the first two terms are sufficient to provide the quantum mechanical relaxation with an estimated accuracy on the order of a few percent. The results in this case are compared with computations obtained using the classical Wigner approximation for the relaxation dynamics.  相似文献   

19.
The calculation of single-particle time correlation functions using the Bose-Einstein centroid dynamics formalism is discussed. A new definition of the quasidensity operator is used to calculate the centroid force on a given particle for an anharmonic system. The force includes correlation effects due to quantum statistics and is used for the calculation of the classical-like dynamics of phase-space centroid variables within the centroid molecular dynamics approximation. Time correlation functions are then obtained for single-particle quantities. These correspond to the double-Kubo transform of exact quantum-mechanical correlation functions. The centroid dynamics results are compared to those of exact basis-set calculations and a good agreement is found. The level of accuracy is in fact the same as what was observed earlier for the calculation of center-of-mass correlation functions for Fermi-Dirac and Bose-Einstein statistics, and for any correlation function for Boltzmann statistics. These results show that it is now possible to use Bose-Einstein centroid molecular dynamics to calculate single-particle correlation functions for systems where quantum exchange effects are present.  相似文献   

20.
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号