首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A universal theoretical framework is proposed for calculating potential of mean force (PMF) between two solute particles immersed in a solvent bath, the present method overcomes all of drawbacks of previous methods. The only input required to implement the recipe is solvent density distribution profile around a single solute particle. The universal framework is applied to calculate the PMF between two large spherical particles immersed in small hard sphere solvent bath. Comparison between the present predictions and existing simulation data shows reliability of the present recipe. Effects of solvent-solute interaction detail, solvent bulk density, and solute size on the excess PMF are investigated. The resultant conclusion is that depletion of solvent component by the solute particle induces attractive excess PMF, while gathering of solvent component by the solute particle induces repulsive excess PMF, high solvent bulk density and large solute size can strengthen the tendency of attraction or repulsion. Relevance of transition from depletion attraction to gathering repulsion with the biomolecular interaction, i.e. hydrophobic attraction and hydration repulsion, is discussed.  相似文献   

2.
3.
Mixed quantum-classical molecular dynamics method has been applied to vibrational relaxation of a hydrophilic model NO in supercritical water at various densities along an isotherm above the critical temperature. The relaxation rate was determined based on Fermi's golden rule at each state point and showed an inverse S-shaped curve as a function of bulk density. The hydration number was also calculated as a function of bulk density based on the calculated radial distribution function, which showed a good correlation with the relaxation rate. Change of the survival probability of the solute vibrational state was analyzed as a function of time together with the trajectory of the solvent water and the interaction with it. We will show that the solvent molecule resides near the solute molecule for a while and the solvent contributes to the relaxation by the random-noiselike Coulombic interaction only when it stays near the solute. After the solvent leaves the solute, it shows no contribution to the relaxation. The relaxation mechanism for this system is significantly different from the collisional one found for a nonpolar solute in nonpolar solvent in Paper I. Then, the relaxation rate is determined, on average, by the hydration number or local density of the solvent. Thus, the density dependence of the relaxation rate for the polar solute in supercritical water is apparently similar to that found for the nonpolar solute in nonpolar solvent, although the molecular process is quite different from each other.  相似文献   

4.
A simple weighted density approximation (SWDA) was extended to nonuniform Lennard-Jones fluids by following the spirit of a partitioned density function theory [S. Zhou, Phys. Rev. E 68 (2003) 061201] and mapping the hard-core part onto an effective hard-sphere fluid whose higher order terms beyond the second order of the functional perturbation expansion are treated by the SWDA. The resultant DFT formalism performs well for Lennard-Jones fluids under the influence of diverse external fields. With the present DFT formalism, we investigate in detail the structure and adsorption properties of a low-density LJ gas in a spherical cavity with a wall consisting of hard-sphere or LJ particles. It was found that when the cavity wall exerts an attractive external potential on the LJ particles in the cavity, the excess adsorption decreases as the temperature increases, while when the cavity wall exerts a hard repulsive external potential on the LJ particles in the cavity, the excess adsorption increases as the temperature increases.  相似文献   

5.
We report grand canonical ensemble Monte Carlo (MC) simulation and theoretical studies of the structural properties of a model system described by an effective interparticle interaction potential, which incorporates basic interaction terms used in modeling of various complex fluids composed of mesoscopic particles dispersed in a solvent bath. The MC results for the bulk radial distribution function are employed to test the validity of the hard-sphere bridge function in combination with a modified hypernetted chain approximation (MHNC) in closing the Ornstein-Zernike (OZ) integral equation, while the MC data for the density profiles in different inhomogeneous environments are used to assess the validity of the third-order+second-order perturbation density functional theory (DFT). We found satisfactory agreement between the results predicted by the pure theories and simulation data, which classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids. The present investigation indicates that the bridge function approximation and density functional approximation, which are traditionally used for the study of neutral atomic fluids, also perform well for complex fluids only on condition that the underlying effective potentials include a highly repulsive core as an ingredient.  相似文献   

6.
A generalization of the recently published quantum-classical approximation [A. A. Neufeld, J. Chem. Phys., 119, 2488 (2003)] for the purposes of reaction dynamics in condensed phase is presented. The obtained kinetic equations treat a solvent influence in a nonphenomenological way, account for the change of the free energy of the surrounding media, allow for different solvent dynamics in each reaction channel, and constitute a powerful framework for an accurate modeling of solvent effects, including ultrafast processes. The key features of the approach are its differential form, which considerably facilitates practical applications, and well defined wide applicability limits. The developed methodology fully accounts for an arbitrary long memory of the canonical bath and covers solvent-induced processes from a subpicosecond time scale.  相似文献   

7.
We demonstrate a method to directly measure the change in the spectrum of intermolecular solvent fluctuations as a function of time after electronic excitation of a solute, and this method is applied to the dye Coumarin 102 (C102) in acetonitrile. The complete intermolecular response is captured following resonant excitation with time domain third-order Raman spectroscopy. In a previous report, we introduced this method and used it to probe one point in the intermolecular response as a function of time after solute excitation (Underwood, D. F., Blank, D. A. J. Phys. Chem. A 2003, 107 (7), 956). Here we extend this approach to recover the change in the entire intermolecular response as a function of time. To our knowledge the results provide the first direct measurement of the difference in the equilibrated intermolecular response after excitation of a solute and its evolution during a dipolar solvation event. Excitation of C102 results in a significant increase in the solvent-solute interaction due to a large increase in the dipole moment. The observed change in the intermolecular response is consistent with a rapid change in local solvent density, with intermolecular kinetic energy transfer changing the response on longer time scales. Evolution of the response exhibits a strong frequency dependence and suggests changes over longer distances at longer delay times. The measured change in the spectrum of solvent fluctuations represents a direct experimental confirmation of the breakdown of linear response and confirms predictions from molecular dynamics simulations.  相似文献   

8.
An integral equation theory which is applicable to inhomogeneous molecular liquids is proposed. The "inhomogeneous reference interaction site model (RISM)" equation derived here is a natural extension of the RISM equation to inhomogeneous systems. This theory makes it possible to calculate the pair correlation function between two molecules which are located at different density regions. We also propose approximations concerning the closure relation and the intramolecular susceptibility of inhomogeneous molecular liquids. As a preliminary application of the theory, the hydration structure around an ion is investigated. Lithium, sodium, and potassium cations are chosen as the solute. Using the Percus trick, the local density of solvent around an ion is expressed in terms of the solute-solvent pair correlation function calculated from the RISM theory. We then analyze the hydration structure around an ion through the triplet correlation function which is defined with the inhomogeneous pair correlation function and the local density of the solvent. The results of the triplet correlation functions for cations indicate that the thermal fluctuation of the hydration shell is closely related to the size of the solute ion. The triplet correlation function from the present theory is also compared with that from the Kirkwood superposition approximation, which substitutes the inhomogeneous pair correlation by the homogeneous one. For the lithium ion, the behavior of the triplet correlation functions from the present theory shows marked differences from the one calculated within the Kirkwood approximation.  相似文献   

9.
The time-resolved diffraction signal from a laser-excited solution has three principal components: the solute-only term, the solute-solvent cross term, and the solvent-only term. The last term is very sensitive to the thermodynamic state of the bulk solvent, which may change during a chemical reaction due to energy transfer from light-absorbing solute molecules to the surrounding solvent molecules and the following relaxation to equilibrium with the environment around the scattering volume. The volume expansion coefficient alpha for a liquid is typically approximately 1 x 10(-3) K(-1), which is about 1000 times greater than for a solid. Hence solvent scattering is a very sensitive on-line thermometer. The decomposition of the scattered x-ray signal has so far been aided by molecular dynamics (MD) simulations, a method capable of simulating the solvent response as well as the solute term and solute/solvent cross terms for the data analysis. Here we present an experimental procedure, applicable to most hydrogen containing solvents, that directly measures the solvent response to a transient temperature rise. The overtone modes of OH stretching and CH3 asymmetric stretching in liquid methanol were excited by near-infrared femtosecond laser pulses at 1.5 and 1.7 microm and the ensuing hydrodynamics, induced by the transfer of heat from a subset of excited CH3OH* to the bulk and the subsequent thermal expansion, were probed by 100 ps x-ray pulses from a synchrotron. The time-resolved data allowed us to extract two key differentials: the change in the solvent diffraction from a temperature change at constant density, seen at a very short time delay approximately 100 ps, and a term from a change in density at constant temperature. The latter term becomes relevant at later times approximately 1 mus when the bulk of liquid expands to accommodate its new temperature at ambient pressure. These two terms are the principal building blocks in the hydrodynamic equation of state, and they are needed in a self-consistent reconstruction of the solvent response during a chemical reaction. We compare the experimental solvent terms with those from MD simulations. The use of experimentally determined solvent differentials greatly improved the quality of global fits when applied to the time-resolved data for C2H4I2 dissolved in methanol.  相似文献   

10.
Previous equilibrium-based density-functional theory (DFT) analyses of cavity formation in the pure component superheated Lennard-Jones (LJ) liquid [S. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10224 (2003); M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102 (2007)] revealed that a thermodynamic limit of stability appears in which no liquidlike density profile can develop for cavity radii greater than some critical size (being a function of temperature and bulk density). The existence of these stability limits was also verified using isothermal-isobaric Monte Carlo (MC) simulations. To test the possible relevance of these limits of stability to a dynamically evolving system, one that may be important for homogeneous bubble nucleation, we perform isothermal-isobaric molecular dynamics (MD) simulations in which cavities of different sizes are placed within the superheated LJ liquid. When the impermeable boundary utilized to generate a cavity is removed, the MD simulations show that the cavity collapses and the overall density of the system remains liquidlike, i.e., the system is stable, when the initial cavity radius is below some certain value. On the other hand, when the initial radius is large enough, the cavity expands and the overall density of the system rapidly decreases toward vaporlike densities, i.e., the system is unstable. Unlike the DFT predictions, however, the transition between stability and instability is not infinitely sharp. The fraction of initial configurations that generate an instability (or a phase separation) increases from zero to unity as the initial cavity radius increases over a relatively narrow range of values, which spans the predicted stability limit obtained from equilibrium MC simulations. The simulation results presented here provide initial evidence that the equilibrium-based stability limits predicted in the previous DFT and MC simulation studies may play some role, yet to be fully determined, in the homogeneous nucleation and growth of embryos within metastable fluids.  相似文献   

11.
A solvation shell may adapt to the presence of a chiral solute by becoming chiral. The extent of this chirality transfer and its dependence on the solute and solvent characteristics are explored in this article. Molecular dynamics simulations of solvated chiral analytes form the basis of the analysis. The chirality induced in the solvent is assessed based on a series of related chirality indexes originally proposed by Osipov [M. A. Osipov et al., Mol. Phys. 84, 1193 (1995)]. Two solvents are considered: Ethanol and benzyl alcohol. Ethanol provides insight into chirality transfer when the solvent interacts with the solute primarily by a hydrogen bond. Several ethanol models have been considered starting with a nonpolarizable model, progressing to a fluctuating charge model, and finally, to a fully polarizable model. This progression provides some insights into the importance of solvent polarizability in the transfer of chirality. Benzyl alcohol, by virtue of the aromatic ring, increases the number of potential solvent-solute interactions. Thus, with these two solvents, the issue of compatibility between the solvent and solute is also considered. The solvation of three chiral solutes is examined: Styrene oxide, acenaphthenol, and n-(1-(4-bromophenyl)ethyl)pivalamide (PAMD). All three solutes have the possibility of hydrogen bonding with the solvent, the last two may also form ring-ring interactions, and the last also has multiple hydrogen bonding sites. For PAMD, the impact of conformational averaging is examined by comparing the chirality transfer about rigid and flexible solutes.  相似文献   

12.
Our method for estimating solvent effects on electronic spectra in media with strong solute-solvent interactions is applied here to calculate the absorption and fluorescence solvatochromatic shifts of dilute triazines in water. First, the ab initio CASSCF method is used to estimate the gas-phase electronic excitation properties and state charge distributions; second, Monte Carlo simulations are performed to elucidate liquid structures around the ground and excited state solute; finally, the solvent shift is evaluated based on the gas-phase charge distributions and the explicit solvent structures. For the dilute triazine solutions, simulations predict one linear (different) hydrogen bond attached to each nitrogen atom. Upon the first (1)(n, pi*)electronic excitation one hydrogen bond is completely broken. For the absorption and fluorescence spectra, our calculations demonstrated that the specific solvent-solute interaction, in any electronic state, plays a critical role in the determination of solvent shifts.  相似文献   

13.
Solvent-solute interaction energies for three well-known drug molecules in water solution are computed at the Hartree-Fock and B3LYP density functional theory levels using a linear scaling technique, which allows one to explicitly include in the model water molecules up to 14 A away from the solute molecule. The dependence of calculated interaction energies on the amount of included solvent has been examined. It is found that it is necessary to account for water molecules within an 8 A radius around the drug molecule to reach the saturated solvent interaction level. Effects of electron correlation and basis set on solvent-solute interaction energies are discussed.  相似文献   

14.
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.  相似文献   

15.
A series of computer simulations has been carried out on bovine pancreatic trypsin inhibitor using various models to mimic the effects of explicit bulk solvent on the structure of the protein. The solvent properties included are the polarization of the solute by the polar bulk solvent and the restraining effect on the motional freedom of the solute due to frictional drag at the solvent–protein surface interface. The former has been included by using a distance–dependent dielectric permittivity to screen the electrostatic interactions, whereas the latter is simulated by adding a limited number of solvent molecules near the protein surface. To achieve the proper mobility of the water molecules, their motion was restrained by adding a harmonic restraining force. It was found that a very small force constant was sufficient to model the static and dynamical behavior of the fully solvated solute, but that it was necessary to include enough explicit waters to occupy the first solvation shell. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.  相似文献   

17.
The globular state of the homopolymer macromolecule in a blend composed of a poor solvent and an amphiphilic solvent (substrate), whose molecules tend to be aligned with the solvent concentration gradient in the inhomogeneity region, was theoretically studied. The size of a homogeneous globule and the substrate concentration in its volume were calculated in terms of a bulk approximation. After the transition of the macromolecule from the coil to the globule state, its volume first decreases with a decrease in temperature and then begins to grow due to substrate molecules penetrating the globule. The substrate concentration in the globule insignificantly exceeds that outside the globule at identical second virial coefficients of interaction between monomer units and between substrate molecules. The expression for the free energy functional depending on the volume fractions of the components and on the orientation of substrate molecules was examined in the ground-state approximation. The orientation effect leads to narrowing of the surface layer and to a decrease in the surface tension of the homogeneous globule, thereby increasing its stability with respect to the transition to the unfolded-coil state.  相似文献   

18.
Using a partially compressible continuum solvation model, we have shown that solvent compression in just the first two solvation shells (or thereabouts) is all that is required to gain the bulk of the compression-induced enhancement to the solvation energy of ions in supercritical water. This result is found to hold even when the direct, equilibrium solvent-solute cluster involves well over a hundred solvent molecules. We argue that, for charge variation reactions in supercritical water, the observed short-range behavior of the compression-induced solvation free energy precludes the existence of any anomalously large nonequilibrium solvent effects which might be expected on the basis of the very large size of the equilibrium clusters. Received: 8 January 1997 / Accepted: 17 January 1997  相似文献   

19.
A recently proposed parameter free version of a Lagrangian theorem-based density functional approximation (LTDFA) [S. Zhou, Phys. Lett. A 319, 279 (2003)] for hard-sphere fluid is applied to hard-core attractive Yukawa model fluid by dividing bulk second-order direct correlation function (DCF) of fluid under consideration into hard-core part and tail part. The former is treated by the parameter free version of the LTDFA, while the tail part is treated by second-order functional perturbation expansion approximation as done in a recent partitioned DFA [S. Zhou, Phys. Rev. E 68, 061201 (2003)]. Two versions of mean spherical approximation (MSA) for the bulk second-order DCF are employed as input, one is the less accurate plain MSA whose tail part of the second-order DCF is strictly independent of a density argument, the other is the more accurate inverse temperature expansion version of the MSA whose tail part is not strictly independent of the density argument. Calculational results indicate that prediction based on the plain MSA is far more accurate than that based on the inverse temperature expansion version of the MSA. The reason is considered to be that the partitioned DFA requires that the tail part is highly or completely independent of the density argument, the plain MSA, by assuming that the tail part is exactly the potential itself, embodies all of the nonlinearities into the hard-core part which can be treated satisfactorily by the parameter free version of the LTDFA. The present investigation results in a universal method for constructing DFA for nonuniform any nonhard-sphere interaction potential fluids.  相似文献   

20.
Mean solute-solute forces and solute-induced solvent structure are investigated for pairs of chemically patterned (patched) solutes in binary mixtures near demixing coexistence. The isotropic and anisotropic hypernetted-chain integral equation theories as well as a superposition approximation are solved and compared. The patched solutes consist of one end that favors the majority species in the mixture while the other end favors the minority species. A wide range of patch sizes is considered. The isotropic and anisotropic theories are found to be in good agreement for most orientations, including the most attractive and most repulsive configurations. However, some differences arise for asymmetrical orientations where unlike ends of the solute particles face each other. In contrast, superposition often gives a rather poor approximation to the mean force, even though the results obtained for the solvent densities agree qualitatively with the anisotropic theory. The mean force is sensitive to small differences in the densities particularly near demixing. For patched solutes the influence of demixing-like behavior is evident both in the orientational dependence and in the range of the mean force acting between solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号