首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-assembled chitosan CdSe quantum dots (QDs) and chitosan CdSe-ZnS core-shell QDs films have been prepared by using layer-by-layer electrostatic technique. The well-ordered nanostructure and the layer-by-layer deposition of the QDs are revealed by AFM and exciton absorption spectra, respectively. The optical nonlinearity of the composite films were studied by using Z-scan technique with femtosecond pulses at the wavelength of 790 nm, the value of third-order susceptibility of core-shell QDs are measured to be about 1.1 x 10(-8) esu, which is about 200% larger than that of CdSe QDs of 5.3 x 10(-9) esu. This has potential applications in all-optical switches in optical information processing.  相似文献   

2.
合成了巯基乙酸(TGA)修饰的壳核型CdTe/CdS量子点(TGA-CdTe/CdS QDs)。 利用紫外-可见光谱吸收、荧光光谱研究TGA-CdTe/CdS QDs与盐酸药根碱(JH)的相互作用机理。 在pH值为7.4的tris-HCl缓冲溶液介质中,QDs与JH相互作用后使QDs的荧光呈线性猝灭,并有良好的线性关系(r=0.999 1),线性范围0.011~10 mg/L,检出限(3σ)为3.3×10-3 mg/L,因此可以作为一种快速、简便、定量测定盐酸药根碱的新方法。  相似文献   

3.
Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.  相似文献   

4.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

5.
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345?nm and 475?nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0?mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280?nM, with a detection limit of 2.2?nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.
Figure
Water soluble Mercaptoacetic acid (MAA)-capped CdS/ZnS core-shell quantum dots (QDs) was synthesised and characterised by using the UV-Visible absorption spectroscopy, Fluorescence spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM). These functionalised QDs are used as fluorescence probe for the determination of Hg(II) ions, based on the fluorescence quenching of QDs. A high optical selectivity and sensitivity toward Hg(II) ions was obtained at pH 7.4 of Tris–HCl buffer with a QDs concentration of 12.0?mgL?1. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs was linearly proportional to mercury ions concentration in the range 0.025?×?10?7 to 2.8?×?10?7?M with a detection limit of 2.2?×?10?9?M. The effect of common foreign ions on the fluorescence of the QDs was examined which confirmed high selectivity of this material towards Hg(II) ions. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using Atomic Absorption Spectroscopy. Therefore, these QDs are not only sensitive and of low cost, but also can be reliable for practical applications.  相似文献   

6.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

7.
The multiphoton absorption properties of the axially substituted tetrapyrazinotetraazaporphyrinato complex Pyz(4)TAPInCl (1) are reported and interpreted. In particular, the nonlinear optical transmission of the complex and the excited states involved in the nonlinear absorption have been determined at the frequency of the second harmonic generation of a Nd:YAG laser in the nanosecond time regime. Pyz(4)TAPInCl has an excited-state absorption cross section larger than its ground state in the 460-540 nm spectral region, and it shows an optical limiting (OL) behavior at 532 nm, which derives from a sequential two-photon absorption with a larger absorption cross section of the excited triplet state with respect to the ground state. It results that the absorption cross section of 1 in the excited triplet state is 7.8 x 10(-18) cm(2) vs 0.9 x 10(-18) cm(2) of the ground state at the wavelength of OL analysis.  相似文献   

8.
以4、5代PAMAM树形分子(64个酯端基)为模板, 在树形分子空腔内原位合成了CdS-ZnS核-壳结构量子点, 并对其形貌和光学性能进行了表征. HRTEM观察发现量子点分散良好, 尺寸均匀, 平均粒径约为2.3 nm. UV-Vis光谱证明ZnS外延生长在CdS核外, EDS能谱也证明了核壳结构的生成. 适当厚度的ZnS壳层可使光致发光效率提高至31%. PAMAM树形分子包在CdS-ZnS核-壳结构量子点外, 构成一层有机壳, 有效地限制了粒子聚集, 钝化了CdS量子点表面, 提高了发光效率. 另外, PAMAM树形分子良好的溶解性也赋予了量子点在不同极性溶剂中良好的溶解性, 提高了其稳定性.  相似文献   

9.
CdTe/CdS量子点的Ⅰ-Ⅱ型结构转变与荧光性质   总被引:4,自引:0,他引:4  
制备了壳层厚度可以精确控制的CdTe/CdS核壳量子点, 利用紫外-可见吸收光谱、光致发光光谱、透射电镜和时间分辨光谱等技术, 分析了CdS壳层厚度对CdTe量子点的荧光量子产率和光谱结构的影响规律. 发现了不同于CdSe/CdS, CdSe/ZnS, CdTe/ZnS等核壳量子点的荧光峰展宽、大幅度红移以及荧光寿命大幅度增加现象. 根据能带的位置关系, 随着CdS厚度的增加, CdTe从Ⅰ型结构逐渐过渡到Ⅱ型核壳结构. 对于Ⅱ型CdTe/CdS核壳量子点, 不仅存在CdTe核区导带电子与价带空穴间的直接复合, 还存在CdS壳层导带电子与CdTe核价带空穴界面处的间接复合, 发光机制的变化导致荧光峰的展宽、明显红移和荧光寿命的增加. 当壳层过厚时, 壳层表面新引入的缺陷会阻碍荧光寿命和量子产率的进一步提高.  相似文献   

10.
本文在水热法合成水溶性CdTe及核壳结构CdTe/CdS量子点的基础上,分别研究了细胞色素c对CdTe量子点及CdTe/CdS核壳量子点荧光的猝灭效应和CdTe量子点对牛血清白蛋白荧光的猝灭效应,并阐述了猝灭机理。结果显示,细胞色素c对CdTe量子点的荧光猝灭效应具有一定的粒径依赖性,粒径越小,猝灭效应越强;细胞色素c对CdTe/CdS核壳量子点的猝灭效应比对CdTe量子点的更强,揭示了受激电子的表面传递机理。CdTe量子点通过松散牛血清白蛋白的螺旋结构而猝灭其荧光。  相似文献   

11.
We report the ultrafast and large third-order nonlinear optical properties of CdS nanocrystals (NCs) embedded in a polymeric film. The CdS NCs of 2 nm radius are synthesized by an ion-exchange method and highly concentrated in the two layers near the surfaces of the polymeric film. The two-photon absorption coefficient and the optical Kerr coefficient are measured with laser pulses of 250 fs duration at 800 nm wavelength. The one-photon and two-photon figures of merit are determined to be 3.1 and 1.3, respectively, at irradiance of 2 GW/cm(2). The observed nonlinearities have a recovery time of approximately 1 ps. The two-photon-generated free carrier effects have also been observed and discussed. These results demonstrate that CdS NCs embedded in polymeric film are a promising candidate for optical switching applications.  相似文献   

12.
He J  Mi J  Li H  Ji W 《The journal of physical chemistry. B》2005,109(41):19184-19187
We report the observation of interband two-photon absorption (TPA) saturation in cadmium sulfide nanocrystals (CdS NCs) under intense femtosecond laser excitation with 1.6 eV photon energy. The observation has been compared to interband TPA saturation in bulk CdS under the same experimental conditions. By using both Z-scan techniques and transient absorption measurements, the saturation intensity has been determined to be 190 GW/cm2 for CdS NCs of 4-nm diameter, which is 2 orders of magnitude greater than that for CdS bulk crystal. The results are in agreement with an inhomogeneously broadened, saturated TPA model.  相似文献   

13.
"Using Te powder as a tellurium source and Na2S as a sulfur source, core-shell CdTe/CdS NPs were synthesized at 50 oC. UV-visible and photoluminescence (PL) spectra were used to probe the effect of CdS passivation on the CdTe quantum dots. As the thickness of CdS shell increases, there is a red-shift in the optical absorption spectra, as well as the PL spectra. The broadening absorption peaks and PL spectra indicate that the size distributions of CdTe/CdS NPs widen increasingly with the increase of CdS coverage. The PL spectra also show that the fluorescence intensity of CdTe QDs will increase when the particles are covered with CdS shell with ratio of S/Te less than 1.0, otherwise it will decrease if the ratio of S/Te is larger than 1.0. Furthermore, the (CdTe/CdS)@SiO2 particles were prepared using a water-in-oil microemulsion method at room temperature in which hydrolysis of tetraethyl orthosilicate leads to the formation of monodispersed silica nanospheres. The obtained (CdTe/CdS)@SiO2 particles show bright photoluminescence with their fluorescence intensity being enhanced 18.5% compared with that of CdTe NPs. TEM imaging shows that the diameter of these composite particles is 50 nm. These nanoparticles are suitable for biomarker applications since they are much smaller than cellular dimensions."  相似文献   

14.
We investigated nonlinear absorption of picosecond laser pulses in a Ru complex [{Ru(bipy)2}2L][PF6] using the open-aperture Z-scan technique. Experiments were performed in a spectral region of moderate linear absorption (lambda=532 nm, sigmag=0.65 x 10(-16) cm(-2)). We observed a transition from reverse saturable absorption to saturable absorption when the excitation intensity was higher than 50 GW/cm2. To determine the population level kinetics, a model based on three- and four-level systems was considered, and the rate equations solved taking into account the propagation equation of the laser pulse inside the sample. Fitting of the experimental data allows extraction of the excited-states absorption cross sections and lifetimes.  相似文献   

15.
CdTe/CdS半导体量子点作为农药百草枯的高灵敏传感器   总被引:2,自引:1,他引:2  
用硫普罗宁(Tiopronin, TP)作为稳定剂合成了水溶性的高荧光CdTe/CdS量子点. 研究了该量子点与10种农药的相互作用. 实验发现, 当农药浓度为4.76×10-6 mol/L时, 农药百草枯(Paraquat)能显著猝灭CdTe/CdS量子点的荧光, 使其荧光强度下降87.3%, 而分别加入乙酰甲胺磷及辛硫磷等其它9种农药, 仅能使CdTe/CdS量子点的荧光强度下降0.1%~5.1%, 显示了该CdTe/CdS量子点对百草枯的特异性传感作用. 采用吸收光谱和时间分辨荧光动力学研究了百草枯对CdTe/CdS量子点的荧光猝灭机理. 计算得出荧光强度猝灭的Stern-Volmer常数K为2.03×106, 而寿命猝灭的Stern-Volmer常数K为4.25×105. 结果表明, 百草枯对CdTe/CdS量子点的荧光猝灭主要为静态过程, 而动态过程的贡献较小. 利用二者的猝灭作用建立了对农药百草枯的高灵敏检测新方法, 校正曲线的线性范围为9.90×10-9~1.50×10-6 mol/L, 检出限为6.35×10-9 mol/L, R=0.999. 用该方法对3种食品和3种水样中残留农药进行了检测, 加标回收率均在82.2%~98.5%之间, 其相对标准偏差为2.62%~8.35%.  相似文献   

16.
在水相中合成了硫普罗宁(Tiopronin,TP)修饰的CdTe/CdS量子点(TP-CdTe/CdS QDs).利用紫外-可见吸收光谱、荧光光谱研究了TP-CdTe/CdS QDs与丝裂霉素(mitomycin C,MMC)的相互作用机理.在pH=7.6的tris-HCl缓冲溶液介质中,TP-CdTe/CdS QDs与MMC相互作用,使TP-CdTe/CdS QDs的荧光发生猝灭,并且QDs的荧光强度与MMC的浓度有良好的线性关系(r=0.9991),线性范围4.7×10-9~1.2×10-8g/mL,检出限(3σ)为1.4×10-g/mL.此方法快速简便,用于尿样中丝裂霉素的测定,实验结果令人满意.  相似文献   

17.
The interaction between human adult hemoglobin (Hb) and bare CdS quantum dots (QDs) was investigated by fluorescence, synchronous fluorescence, circular dichroism (CD), and Raman spectroscopic techniques under physiological pH 7.43. The intrinsic fluorescence of Hb is statically quenched by CdS QDs. The quenching obeys the Stern-Volmer equation, with an order of magnitude of binding constant (K) of 10(7). The electrostatic adsorption of Hb on the cationic CdS QDs surface is energetically favorable (DeltaS(0)=70.22 Jmol(-1)K(-1), DeltaH(0)=-23.11 kJmol(-1)). The red shift of synchronous fluorescence spectra revealed that the microenvironments of tryptophan and tyrosine residues at the alpha(1)beta(2) interface of Hb are disturbed by CdS QDs, which are induced from hydrophobic cavities to a more exposed or hydrophilic surrounding. The secondary structure of the adsorbed Hb has a loose or extended conformation for which the content of alpha-helix has decreased from 72.5 to 60.8%. Moreover, Raman spectra results indicated that the sulfur atoms of the cysteine residues form direct chemical bonds on the surface of the CdS QDs. The binding does not significantly affect the spin state of the heme iron, and deoxidation is not expected to take place on the coated oxyhemoglobin. The change of orientation of heme vinyl groups was also detected.  相似文献   

18.
A novel, sensitive and convenient determine technology based on the quenching of the fluorescence intensity of functionalized CdS quantum dots by sulfadiazine was proposed. Luminescent CdS semiconductor quantum dots (QDs) modified by thioglycollic acid (TGA) were synthesized with the microwave method. The modified CdS QDs are water-soluble, stable and highly luminescent. The possible mechanism for the reaction was also discussed. When sulfadiazine was added into the CdS QDs colloid solution, the surface of CdS QDs generates the electrostatic interaction in aqueous medium, which induces the quenching of fluorescence emission at 489 nm. Under optimum condition, the fluorescence intensity versus sulfadiazine concentration gave a linear response according Stern-Volmer equation with an excellent 0.9981 correlation coefficient. The linearity range of the calibration curve was 1.2 x 10(-5) to 2.13 x 10(-3) mol L(-1). The limit of detection (3delta) is 8.0 micromol L(-1). The relative standard deviation for five determinations of 0.13 x 10(-3)mol L(-1) sulfadiazine is 1.4%. The concentrations of sulfadiazine injections were determined by the proposed method with a satisfactory result.  相似文献   

19.
Characterization of quantum dots using capillary zone electrophoresis   总被引:1,自引:0,他引:1  
Pereira M  Lai EP  Hollebone B 《Electrophoresis》2007,28(16):2874-2881
Commercially available quantum dots (QDs) were characterized using CE. The CE instruments were laboratory-built, each being capable of both electrokinetic and hydrodynamic injection. Modes of detection include UV absorption and LIF. The CE-LIF system was further modified to handle microliter sample volumes during injection. Sodium phosphate (5-25 mM, pH 7.5-11) was found to be a good buffer electrolyte. Sodium mercaptoproprionate CdTe/CdS (ADS620) QDs and carboxylic acid CdSe/ZnS (T2-Evitag) QDs yielded high separation efficiencies of N = 1.5x10(6) plates at t(M) = 10 min and N = 1.0x10(5) plates at t(M) = 3.8 min, respectively. Apparently the EDC/sulfo-NHS bioconjugation chemistry worked well with the neutral T2-Evitag QDs, but not so well with the negatively charged ADS620 QDs. This preliminary knowledge will serve as a basis for new CE immunoassay studies of QD-biomolecule conjugates and their immunocomplexes with target analytes.  相似文献   

20.
The composite nanoparticles of Au-core capped by CdS shells of different thickness were prepared and assembled into densely packed 3-dimensional films by the layer-by-layer self-assembly (LBL) technique. These films exhibited the 3-dimensional structure of densely packed Au@CdS composite nanoparticles and the shell thickness was tunable by changing the concentration of Cd2+-thiourea complexes. These multilayer films exhibited enhanced third-order optical nonlinear responses and ultrafast response times (several picoseconds). The third-order nonlinear optical susceptibility of the film with the CdS shell thickness of 4.4 nm was estimated to be 1.48 x 10(-9) esu and the value decreases with the increase of the CdS shell thickness. The enhancement of the optical nonlinearity was explained based on the calculation according to the electrostatic approximation by the solution of Laplace's equation under the boundary conditions appropriate to the model of core-shell nanoparticles, and mainly attributed to localized electric field effects in the CdS shell region. Additionally, the nonlinearity was optimized by determination of the values of the dielectric constant and thickness of the different shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号