首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

2.
Yttrium tungstate precursors with novel 3D hierarchical architectures assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method with the assistance of sodium dodecyl benzenesulfonate (SDBS). After calcination, the precursors were easily converted to Y(2)(WO(4))(3) without an obvious change in morphology. The as-prepared precursors and Y(2)(WO(4))(3) were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra, respectively. The results reveal that the morphology and dimensions of the as-prepared precursors can be effectively tuned by altering the amounts of organic SDBS and the reaction time, and the possible formation mechanism was also proposed. Upon ultraviolet (UV) excitation, the emission of Y(2)(WO(4))(3):x mol% Eu(3+) microcrystals can be tuned from white to red, and the doping concentration of Eu(3+) has been optimized. Furthermore, the up-conversion (UC) luminescence properties as well as the emission mechanisms of Y(2)(WO(4))(3):Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho) microcrystals were systematically investigated, which show green (Er(3+), (4)S(3/2), (2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow (Ho(3+), (5)S(2)→(5)I(8)) luminescence under 980 nm NIR excitation. Moreover, the doping concentration of the Yb(3+) has been optimized under a fixed concentration of Er(3+) for the UC emission of Y(2)(WO(4))(3):Yb(3+)/Er(3+).  相似文献   

3.
Song Y  You H  Huang Y  Yang M  Zheng Y  Zhang L  Guo N 《Inorganic chemistry》2010,49(24):11499-11504
Gd(2)O(2)S:Ln(3+) (Ln = Eu, Tb) submicrospheres were successfully prepared through a facile and mild solvothermal method followed by a subsequent heat treatment. X-ray diffraction (XRD) results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure hexagonal phase of Gd(2)O(2)S. The energy dispersive spectroscopy (EDS), element analysis, and FT-IR results show that the precursors are composed of the Gd, Eu, O, S, C, H, and N elements. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that these spheres are actually composed of randomly aggregated nanoparticles. The formation mechanism for the Gd(2)O(2)S:Ln(3+)(Ln = Eu, Tb) spheres has been proposed on an isotropic growth mechanism. Under ultraviolet excitation, Gd(2)O(2)S:Ln(3+)(Ln = Eu, Tb) spheres show red and green emission corresponding to the (5)D(0)→(7)F(2) transition of the Eu(3+) ions and the (5)D(4)→(7)F(5) transition of the Tb(3+) ions. Furthermore, this synthetic route may have potential applications for fabricating other lanthanide oxysulfides.  相似文献   

4.
Gd(2)(WO(4))(3) doped with Eu(3+) or Tb(3+) thin phosphor films with dot patterns have been prepared by a combinational method of sol-gel process and microcontact printing. This process utilizes a PDMS elastomeric mold as the stamp to create heterogeneous pattern on quartz substrates firstly and then combined with a Pechini-type sol-gel process to selectively deposit the luminescent phosphors on hydrophilic regions, in which a Gd(2)(WO(4))(3):Ln(3+) (Ln=Eu, Tb) precursor solutions were employed as ink. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra, as well as low voltage cathodoluminescence (CL) spectra were carried out to characterize the obtained samples. Under ultraviolet excitation and low-voltage electron beams excitation, the Gd(2)(WO(4))(3):Eu(3+) samples exhibit a strong red emission arising from Eu(3+)(5)D(0,1,2)-(7)F(1,2) transitions, while the Gd(2)(WO(4))(3):Tb(3+) samples show the green emission coming from the characteristic emission of Tb(3+) corresponding to (5)D(4)-(7)F(6,5,4,3) transitions. The results show that the patterning of rare earth-doped phosphors through combining microcontact printing with a Pechini-type sol-gel route has potential for field emission displays (FEDs) applications.  相似文献   

5.
Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.  相似文献   

6.
Xie M  Tao Y  Huang Y  Liang H  Su Q 《Inorganic chemistry》2010,49(24):11317-11324
The VUV-vis spectroscopic properties of Tb(3+) activated fluoro-apatite phosphors Ca(6)Ln(2-x)Tb(x)Na(2)(PO(4))(6)F(2) (Ln = Gd, La) were studied. The results show that phosphors Ca(6)Gd(2-x)Tb(x)Na(2)(PO(4))(6)F(2) with Gd(3+) ions as sensitizers have intense absorption in the VUV range. The emission color of both phosphors can be tuned from blue to green by changing the doping concentration of Tb(3+) under 172 nm excitation. The visible quantum cutting (QC) via cross relaxation between Tb(3+) ions was observed in cases with and without Gd(3+). Though QC can be realized in phosphors Ca(6)La(2-x)Tb(x)Na(2)(PO(4))(6)F(2), we found that Gd(3+)-containg phosphors have a higher QC efficiency, confirming that the Gd(3+) ion indeed plays an important role during the quantum cutting process. In addition, the energy transfer process from Gd(3+) to Tb(3+) as well as (5)D(3)-(5)D(4) cross relaxation was investigated and discussed in terms of luminescence spectra and decay curves.  相似文献   

7.
Systematic explorations of new phases in the Ln(III)-V(V)-Se(IV)-O systems by hydrothermal syntheses led to four new quaternary compounds, namely, Nd(2)(V(V)(2)O(4))(SeO(3))(4)·H(2)O (1), Ln(V(V)O(2))(SeO(3))(2) (Ln = Eu 2, Gd 3, Tb 4). The structure of Nd(2)(V(V)(2)O(4))(SeO(3))(4)·H(2)O features a 3D framework composed of the 2D layers of [N d(SeO(3))](+) bridged by the infinite [VO(2)(SeO(3))](-) chains with the lattice water molecules located at the 6-membered ring tunnels formed. The structure of Ln(V(V)O(2))(SeO(3))(2) (Ln = Eu, Gd, Tb) also features a 3D framework composed of 2D layers of [Ln(SeO(3))](+) bridged by the infinite [(VO(2))(SeO(3))](-) double chains. The 1D vanadium oxide selenite chain of 1 differs significantly from those in compounds 2-4 in terms of the coordination modes of the selenite groups and the connectivities between neighbouring VO(6) octahedra. Luminescent and magnetic properties of these compounds were also measured.  相似文献   

8.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

9.
The structures and magnetic properties of four isomorphous nonanuclear heterometallic complexes [Na(2){Mn(3)(III)(μ(3)-O(2-))}(2)Ln(III)(hmmp)(6)(O(2)CPh)(4)(N(3))(2)]OH·0.5 CH(3)CN·1.5H(2)O are reported, where Ln(III) = Eu (1), Gd (2), Tb (3) and Dy (4), H(2)hmmp = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol. Complexes 1-4 were prepared by the reactions of hmmpH(2) with a manganese salt and the respective lanthanide salt together with NaO(2)CPh and NaN(3). Single-crystal X-ray diffraction analyses reveal that the six Mn(III) and one Ln(III) metal topology in the aggregate can be described as a bitetrahedron. The two peripheral [Mn(III)(3)(μ(3)-O(2-))](7+) triangles are each bonded to a central Ln(III) ion with rare distorted octahedral geometry. The magnetic properties of all the complexes were investigated using variable temperature magnetic susceptibility and both antiferromagnetic and ferromagnetic interactions exist in the [Mn(III)(3)(μ(3)-O(2-))](7+) triangle. Weak ferromagnetic exchange between the Ln(III) and Mn(III) ions has been established for the corresponding Gd derivative. The Gd, Tb and Dy complexes show no evidence of slow relaxation behaviour above 2.0 K.  相似文献   

10.
A red-emitting phosphor, Eu(3+)-doped Ca(9)LiGd(2/3)(PO(4))(7), was synthesized by the conventional high-temperature solid-state reaction. X-ray powder diffraction (XRD) analyses confirmed the pure crystalline phase of Whitlockite-type structure. The excitation spectra of Eu(3+) doped Ca(9)LiGd(2/3)(PO(4))(7) were measured in the VUV and UV region indicating an efficient energy transfer process from the host and Gd(3+) to Eu(3+) ions. Upon excitation with VUV and UV radiation, the phosphor showed strong red emission around 611 nm corresponding to the forced electric dipole (5)D(0)→(7)F(2) transition of Eu(3+) ions. The VUV- and UV-excited luminescence spectra of Ca(9)LiGd(2/3)(PO(4))(7):Eu(3+) together with the dependence of the integrated emission intensities on the doping levels were investigated. The Eu(3+) ions were investigated by a tunable laser as an excitation source. The excitation spectra of (7)F(0)→(5)D(0) transitions suggest that there are two families of inequivalent sites for Eu(3+) in this host. The concentration quenching and crystallographic site-occupancy of Eu(3+) ions in Ca(9)LiGd(2/3)(PO(4))(7) host were discussed on the basis of the site selective excitation and emission spectra, the luminescence decay and its crystal structure.  相似文献   

11.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

12.
Well crystallized nanoplates of the (Y(0.95-x)Gd(x)Eu(0.05))(2)(OH)(5)NO(3)·nH(2)O ternary layered rare-earth hydroxides (LRHs), synthesized hydrothermally, have been investigated with emphasis on the effects of Gd(3+) substitution for Y(3+) on the structural features and optical properties. Characterizations of the materials were achieved by the combined techniques of XRD, FT-IR, TEM, DTA/TG, and optical spectroscopies. The results showed that Gd(3+) substitution leads to linearly expanded ab plane, shortened interlayer distance (c/2), and reduced hydration (smaller n value) of the crystal structure. As a consequence, the Ln(3+) partially shifts from the C(4v) to C(1) site symmetries and thus leads to systematically altered photoluminescence behaviors. Under the (7)F(0)→(5)L(6) transition excitation of Eu(3+) at 394 nm, both the (5)D(0)→(7)F(2) to (5)D(0)→(7)F(4) and the 595 nm (5)D(0)→(7)F(1) to 590 nm (5)D(0)→(7)F(1) intensity ratios linearly increase towards a higher Gd(3+) content. The incorporated Gd(3+) cations selectively sensitize emission from the C(1)-site Eu(3+) and produce a new charge transfer (CT) excitation band at ~254 nm. With this, the desired 615-nm red emission is obtainable either under intra-4f(6) transition excitation of Eu(3+) or by exciting the CT band. The materials have similar fluorescence lifetimes of 0.85 ± 0.05 ms for the 615-nm emission, irrespective of the Gd(3+) content and excitation wavelength.  相似文献   

13.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

14.
YF(3):Ln(3+) (Ln = Ce, Tb, Pr) microspindles were successfully fabricated by a facile hydrothermal method. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), lifetimes, photoluminescence (PL) and low-voltage cathodoluminescence (CL) were used to characterize the resulting samples. The lengths and diameters of YF(3):0.02Ce(3+) microspindles are around 760 nm and 230 nm, respectively. Adding dilute acid and trisodium citrate (Cit(3-)) are essential for obtaining YF(3) microspindles. A potential formation mechanism for YF(3) microspindles has been presented. PL spectroscopy investigations show that YF(3):Ce(3+) and YF(3):Tb(3+) microcrystals exhibit the characteristic emission of Ce(3+) 5d → 4f and Tb(3+ 5)D(4)→(7)F(J) (J = 6-3) transitions, respectively. In addition, the energy transfer from Ce(3+) to Tb(3+) was investigated in detail for YF(3):Ce(3+), Tb(3+) microspindles. Under the excitation of electron beams, YF(3):Pr(3+) show quantum cutting emission and YF(3):Ce(3+), Tb(3+) phosphors exhibit more intense green emission than the commercial phosphor ZnO:Zn.  相似文献   

15.
The synthesis and characterization of a family of Mn(2)(III)Mn(2)(II)Ln(III)(2) complexes (Ln = Gd (1), Tb (2), Dy (3), and Ho (4)) of formula [Mn(4)Ln(2)O(2)(O(2)CBu(t))(6)(edteH(2))(2)(NO(3))(2)] are reported, where edteH(4) is N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine. The analogous Mn(4)Y(2) (5) complex has also been prepared. They were obtained from reaction of Ln(NO(3))(3) or Y(NO(3))(3) with Mn(O(2)CBu(t))(2), edteH(4), and NEt(3) in a 2:3:1:2 molar ratio. The crystal structures of representative 1 and 2 were obtained, and their core consists of a face-fused double-cubane [Mn(4)Ln(2)(μ(4)-O(2-))(2)(μ(3)-OR)(4)] unit. Such double-cubane units are extremely rare in 3d metal chemistry and unprecedented in 3d-4f chemistry. Variable-temperature, solid-state dc and ac magnetic susceptibility studies on 1-5 were carried out. Fitting of dc χ(M)T vs T data for 5 gave J(bb) (Mn(III)···Mn(III)) = -32.6(9) cm(-1), J(wb) (Mn(II)···Mn(III)) = +0.5(2) cm(-1), and g = 1.96(1), indicating a |n, 0, n> (n = 0-5) 6-fold-degenerate ground state. The data for 1 indicate an S = 12 ground state, confirmed by fitting of magnetization data, which gave S = 12, D = 0.00(1) cm(-1), and g = 1.93(1) (D is the axial zero-field splitting parameter). This ground state identifies the Mn(II)···Gd(III) interactions to be ferromagnetic. The ac susceptibility data independently confirmed the conclusions about 1 and 5 and revealed that 2 displays slow relaxation of the magnetization vector for the Mn(4)Tb(2) analogue 2. The latter was confirmed as a single-molecule magnet by observation of hysteresis below 0.9 K in magnetization vs dc field scans on a single crystal of 2·MeCN on a micro-SQUID apparatus. The hysteresis loops also displayed well-resolved quantum tunneling of magnetization steps, only the second 3d-4f SMM to do so.  相似文献   

16.
A series of novel lanthanide polyoxomolybdates was synthesized by reaction of lanthanide cations with the Anderson type anion (TeMo(6)O(24))(6-). The polyoxometalates K(6n)(TeMo(6)O(24))(n)[(Ln(H(2)O)(7))(2)(TeMo(6)O(24))](n)[middle dot]16nH(2)O (Ln = Eu, Gd) and K(3n)[Ln(H(2)O)(5)(TeMo(6)O(24))](n)[middle dot]6nH(2)O (Ln = Tb, Dy, Ho, Er) were characterized by X-ray structure analysis, elemental analysis and IR spectroscopy. We found that the solid-state structures of Ln/(TeMo(6)O(24))(6-) compounds are strongly dependent on the lanthanide cations, and therefore represent a rare example for different arrangements of building units depending on the nature of the rare earth cations. While the Eu(3+) and Gd(3+) cations achieve ninefold coordination by seven water molecules and two terminal oxygen atoms of the (TeMo(6)O(24))(6-) anions, the Tb(3+), Dy(3+), Ho(3+) and Er(3+) cations are coordinated by five water molecules, two terminal oxygen atoms and one molybdenum-bridging oxygen atom belonging to the (TeMo(6)O(24))(6-) anion. The europium and gadolinium substituted compounds contain infinite one-dimensional [(Ln(H(2)O)(7))(2)(TeMo(6)O(24))](n) chains; the terbium, dysprosium, holmium and erbium compounds contain infinite one-dimensional [Ln(H(2)O)(5)(TeMo(6)O(24))](n)(3n-) chains.  相似文献   

17.
A series of isostructural 3d-4f coordination clusters (CCs) [Mn(4)Ln(4)(OH)(6)(H(2)L)(2)(H(3)L)(2)(PhCO(2))(2)(N(3))(2)(MeOH)(4)]Cl(1.6)(N(3))(0.4)(NO(3))(2)·2.4H(2)O·1.6MeOH where Ln = Gd, Tb, Dy, Ho and Er and H(5)L = bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (bis-tris) has been synthesised and structurally characterised. The paramagnetic metal ions within the clusters are weakly antiferromagnetically coupled, with the Tb and Dy compounds displaying slow relaxation of their magnetisation. This is the first report of this versatile ligand being used to target 3d-4f CCs.  相似文献   

18.
The reaction of triethanolamine (teaH(3)) with [Fe(III)(3)O(O(2)CCH(3))(6)(H(2)O)(3)]Cl·6H(2)O and Ln(NO(3))(3)·6H(2)O in acetonitrile yields [Fe(16)Ln(4)(tea)(8)(teaH)(12)(μ-O(2)CCH(3))(8)](NO(3))(4)·16H(2)O·xMeCN (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6); x = 10 or 11). These 20-membered metallo-ring complexes are the largest such single-stranded oxygen-bridged rings so far reported. The structure is stabilised by two of the acetate ligands, which form anti,anti-bridges across the centre of the ring, pinching the ring and giving it rigidity. The magnetic properties are dominated by the antiferromagnetic couplings between the Fe(III) centres. Although the Fe(2) and Fe(6) sub-chains within the ring are fully spin-compensated at low temperatures with S(subchain) = 0, coupling between the Gd(III) cations and the Fe(III) centres at the ends of the sub-chains (in 3) results in a pinning of the lanthanide spins. The (57)Fe M?ssbauer spectra of 3 and 5 obtained at low temperatures are consistent with the presence of Fe(III) intracluster strong antiferromagnetic coupling. The applied field spectrum for 3 reveals no magnetic hyperfine interaction apart from that of the nucleus with the applied field, while the one for 5 is a superposition of three subspectra which show contributions from each of the peripheral as well as from the central iron sites.  相似文献   

19.
Xia Z  Wang X  Wang Y  Liao L  Jing X 《Inorganic chemistry》2011,50(20):10134-10142
A new family of chloroborate compounds, which was investigated from the viewpoint of rare earth ion activated phosphor materials, have been synthesized by a conventional high temperature solid-state reaction. The crystal structure and thermally stable luminescence of chloroborate phosphors Ba(2)Ln(BO(3))(2)Cl:Eu(2+) (Ln = Y, Gd, and Lu) have been reported in this paper. X-ray diffraction studies verify the successful isomorphic substitution for Ln(3+) sites in Ba(2)Ln(BO(3))(2)Cl by other smaller trivalent rare earth ions, such as Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. The detailed structure information for Ba(2)Ln(BO(3))(2)Cl (Ln = Y, Gd, and Lu) by Rietveld analysis reveals that they all crystallize in a monoclinic P2(1)/m space group. These compounds display interesting and tunable photoluminescence (PL) properties after Eu(2+)-doping. Ba(2)Ln(BO(3))(2)Cl:Eu(2+) phosphors exhibit bluish-green/greenish-yellow light with peak wavelengths at 526, 548, and 511 nm under 365 UV light excitation for Ba(2)Y(BO(3))(2)Cl:Eu(2+), Ba(2)Gd(BO(3))(2)Cl:Eu(2+), and Ba(2)Lu(BO(3))(2)Cl:Eu(2+), respectively. Furthermore, they possess a high thermal quenching temperature. With the increase of temperature, the emission bands show blue shifts with broadening bandwidths and slightly decreasing emission intensities. It is expected that this series of chloroborate phosphors can be used in white-light UV-LEDs as a good wavelength-conversion phosphor.  相似文献   

20.
The reaction between polyoxometalate (POM) [TBA](12)[WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] (TBA = tetrabutyl ammonium) and lanthanide (Ln) nitrate (Ln = La, Eu and Tb) in a mixed solvent of CH(3)CN and DMF yielded three noncentrosymmetric diamondoid Ln-POM solid materials, {[Ln(2)(DMF)(8)(H(2)O)(6)][ZnW(12)O(40)]}·4DMF (Ln-POM; Ln = La, Eu and Tb). In these compounds, the {ZnW(12)O(40)} unit, transferred from the metastable [WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] cluster, acts as a tetradentate ligand to connect with four Ln nodes, while the Ln ion links up two {ZnW(12)O(40)} units. These compounds generated interesting luminescence emissions that are dependent on the Ln ions and their ratios. White light emission was obtained by a doped approach with a rational ratio of the Eu(3+) and Tb(3+) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号