首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rheological properties and flow instability are studied for binary blends composed of a long-chain branched polyethylene and a linear polyethylene. It is found that the blends containing a linear-polyethylene with high shear viscosity exhibit higher oscillatory moduli, drawdown force, and strain-hardening behavior. The blends showing the anomalous rheological phenomena show sharkskin failure in low shear rate region as compared with a pure linear polyethylene. Moreover, the blends exhibit severe gross melt fracture at low output rate. Enhanced strain-hardening in elongational viscosity and large entrance angle at a die entry will be responsible for the severe gross melt fracture for the blends.  相似文献   

2.
Immiscible blends containing liquid crystalline polymers (LCP) as dispersed phases show different dynamic rheological properties than those composed of flexible polymers. The widely used Palierne’s model was shown by many authors to be insufficient to describe the frequency dependence of dynamic modulus of such blends. A new model was presented to describe the dynamic rheology of the immiscible blend containing LCP as a dispersed phase. The flexible chain polymer matrix was assumed to be a linear viscoelastic material under small amplitude oscillatory shear flow, and the LCP was assumed to be an Ericksen’s transversely isotropic fluid. The Rapini-Papoular equation of anisotropic interfacial energy was used to account for the effect of nematic orientation on the interfacial tension. It was found that the orientation of the director and the anchoring energy greatly influenced the storage modulus at the “shoulder” regime. The overall dynamic modulus of the blend can be well described by the model with suitable choice of the orientation of the director and anchoring energy of LCP.  相似文献   

3.
In this work, the rheological behaviour of high molecular mass polyamide 6 (PA6)/organo-montmorillonite nano-composites, obtained via melt blending, was investigated under shear and extensional flow. Capillary rheometry was used for the measurement of high shear rate steady state shear viscosity and die entrance pressure losses; further, by the application of a converging flow method (Cogswell model) to these experimental results, elongational viscosity data were indirectly calculated. The extensional behaviour was directly investigated by means of melt spinning experiments, and data of apparent elongational viscosity were determined. The results evidenced that the presence of the organo-clay in filled PA6 melts modifies the rheological behaviour of the material, with respect to the unfilled polymer, in dependence on the type of flow experienced by the fluid. In shear flow, the nano-composites showed a slightly lower viscosity than neat PA6, whereas in elongation, they appeared much more viscous, in dependence on the organo-clay content.  相似文献   

4.
The response of a considerable number of solutions of several polymers (PEO, HPAM, PAM) with concentrations of less than 100 ppm in orifice flow has been investigated. It is shown that the excess pressure (difference between the ADPS and the solvent total pressure drop) behaves linearly as a function of a superficial strain rate (ratio between a velocity and a length scale). In rheological terms this behaviour is interpreted as the result of a constant elongational viscosity whose values are two to three orders of magnitude larger than the shear viscosity. A formal approach to this phenomenological interpretation is suggested.  相似文献   

5.
Blends of polyethylene terephthalate (PET) with a liquid crystalline polymer (LCP) and a compatibilizer were produced by twin screw extrusion and injection molding. Transesterification and compatibilization studies were made in a torque rheometer. The morphology of the injection-molded plaques was studied by scanning electron microscopy. The blends shear growth function was measured in a cone and plate rheometer. The elongational growth function was measured in a modified rotational rheometer. Transesterification was observed in the PET/LCP/compatibilizer 95/5/0 blend. The injection-molded plaques displayed the usual “skin-core” morphology. All the blends were highly shear-thinning, even at low shear rates; thus, a zero-shear viscosity could not be calculated. The compatibilized blend had the highest shear viscosity of all the blends, confirming the strong PET/LCP interphase and the effectiveness of the compatibilizing agent. On the other hand, the 90/10/0 blend had the lowest shear viscosity. All the blends showed strain softening behavior, similar to the PET. The 90/10/0 blend had the highest elongational growth function, while the 95/5/0 had the lowest. The compatibilized blend had an intermediate behavior between both blends.  相似文献   

6.
应用共转导数型本构方程研究了液晶高分子纺丝挤出过程的拉伸黏度,应用计算机符号运算软件 Maple得出解析表达式,拉伸黏度与拉伸率之间关系(随剪切速率变化)表明存在分岔现象,得出拉伸黏度显著高于相应的剪切黏度,解释了液晶高分子熔体挤出时不发生挤出胀大的物理机制.  相似文献   

7.
Corn starch and maleic anhydride functionalized synthetic polymers were melt blended in a Haake twin-screw extruder. The amount of starch in the blends was 60 and 70% by weight. The synthetic polymer used was either styrene maleic anhydride (SMA) or ethylene propylene maleic anhydride copolymer (EPMA). The blends did not exhibit normal thermoplastic behavior; and hence, rheological data was obtained by extrusion feeding the material through a slit die or cylindrical tube viscometer. The starch/SMA blends were extruded through a slit viscometer with a 45% half entry angle, while the starch/EPMA blends were extruded through a cylindrical tube viscometer with a half entry angle of 37.5°. For the blends, data could be obtained at low to moderate shear rates (10< app<200s–1). At higher shear rates, blends exhibited slip and/or degradation of starch. The viscosity of the blends exhibited shear-thinning properties. Regrinding and re-extruding through the viscometer a second time showed a significant reduction in shear viscosity for starch/SMA blends. Gel permeation chromatography data indicated that starch macromolecules degraded upon successive extrusion. Extensional viscosity, as estimated from entrance pressure drop method for starch/EPMA blends showed stretch thinning properties. Regrinding and re-extruding showed that the samples were more sensitive to changes in extensional viscosity as observed from the Trouton ratio versus extension rate plot. Optical microscopy showed the presence of starch granules after melt blending, the size of which was related to the torque (or stress) generated during extrusion. The higher the torque, the smaller the size of the starch granules. Successive extrusion runs reduced the number of unmelted granules.Nomenclature A,B Constants associated with power law fluids (Pa sm or n) - e Entrance correction - H Height of slit die (m) - m, n Flow behavior index in shear and extension flow respectively - P s Shear component of the entrance pressure drop (Pa) - P e Extensional component of the entrance pressure drop (Pa) - Q volumetric flow rate (m3S–1) - R o radius of barrel exit (m) - R 1 radius of cylindrical die (m) - T r Trouton ratio - w width of slit die (m) - pressure gradient (Pam–1) - half die entry angle - P en Entrance Pressure Drop (Pa) - apparent extension rate (s–1) - apparent shear rate (s–1) - w wall shear stress (Pa) - first normal stress difference in uniaxial extension (Pa)  相似文献   

8.
In this study, the generation of inkjet droplets of xanthan gum solutions in water–glycerin mixtures was investigated experimentally to understand the jetting and drop generation mechanisms of rheologically complex fluids using a drop-on-demand inkjet system based on a piezoelectric nozzle head. The ejected volume and velocity of droplet were measured while varying the wave form of bipolar shape to the piezoelectric inkjet head, and the effects of the rheological properties were examined. The shear properties of xanthan gum solutions were characterized for wide ranges of shear rate and frequency by using the diffusive wave spectroscopy microrheological method as well as the conventional rotational rheometry. The extensional properties were measured with the capillary breakup method. The result shows that drop generation process consists of two independent processes of ejection and detachment. The ejection process is found to be controlled primarily by high or infinite shear viscosity. Elasticity can affect the flow through the converging section of inkjet nozzle even though the effect may not be strong. The detachment process is controlled by extensional viscosity. Due to the strain hardening of polymers, the extensional viscosity becomes orders of magnitude larger than the Trouton viscosities based on the zero and infinite shear viscosities. The large extensional stress retards the extension of ligament, and hence the stress lowers the flight speed of the ligament head. The viscoelastic properties at the high-frequency regime do not appear to be directly related to the drop generation process even though it can affect the extensional properties.  相似文献   

9.
The mechanism of the electrorheological (ER) effect in two types of liquid crystalline polymer (LCP)/dimethylsiloxane (DMS) blends was investigated by rheological measurements and by structure observation under electric field and shear flow. The results show that the phase structures of these immiscible blends can be categorized into slipping (low viscosity) and non-slipping (high viscosity) states. In the non-slipping state, higher viscosity LCP domains connect the electrodes. In the slipping state, on the other hand, LCP domains do not connect the electrodes and the shear is mainly confined in the lower viscosity DMS domains. The ER effect (electrically induced viscosity increase) originates from the electrically induced slipping to non-slipping transition. In one of the blends, the ER effect occurs only at high shear rate, since this blend is in non-slipping state even under no field if the shear rate is low. Received: 29 April 1997 Accepted: 3 November 1997  相似文献   

10.
In this work liquid crystalline polymer (LCP) and thermoplastic (TP) blends with and without compatibilizer were studied with respect to their elongational flow behavior, under uniaxial extensional flow. This knowledge is important because in processes involving dominantly extensional deformations, like the case of the formation of the LCP fibrillation, transient extensional flow properties become more important than transient or steady-shear properties. In systems characterized by disperse phase morphologies (10 and 20 wt%) the LCP acts as a plasticizer, decreasing the viscosity of the system and increasing its durability with respect to that of the matrix. On the other hand, for a system in which a co-continuous morphology is present (40 wt% LCP) fibrils and droplets deformation occurs simultaneously, leading to a much higher strain hardening and durability. Moreover, the addition of compatibilizers to the blends gives rise to an increase of the strain hardening and to a decrease of the durability, which is in accordance with the mechanical properties, namely a higher Young’s modulus and lower elongation at break, in comparison with noncompatibilized systems.  相似文献   

11.
In order to find the relationships between processibility and properties of the polypropylene/ethylene vinyl alcohol copolymer (PP/EVOH) blends, their rheological behavior, in both shear and extensional flows, was studied and related with mechanical, morphological, and barrier properties of the materials. The nonlinear viscoelastic behavior in shear was also analyzed. The data showed that the rheological parameters (viscosity, loss modulus, storage modulus, extensional viscosity, and Trouton ratio) improved with the addition of low quantities of sodium ionomer copolymer used as compatibilizer. At the same time, the overall properties of the PP/EVOH blends improved as a result of the compatibilizer addition. The morphological analysis showed that the changes in the material properties were related with a more uniform distribution of EVOH particles in the PP matrix. The rheological data obtained allowed us to choose the optimal range for EVOH and ionomer contents, especially in terms of combining good processing characteristics with the good final properties.  相似文献   

12.
Mackay et al. (1995) have presented an approximate technique to determine the elongation viscosity from pressure drop measurements in a simple stagnation flow device. In the present paper we describe experiments using a high viscosity Newtonian oil, aimed at probing some of the assumptions made by Mackay et al. We find that Trouton ratios calculated using the original analysis are well above the value of three expected for Newtonian fluids. Finite element simulations of the flow field show this is due to the net pressure drop having a substantial shear contribution, which should be corrected for before the Trouton ratios are evaluated. Interestingly, most of the shear correction is due to shear on the inside of the orifice near the exit from the central flow region. The shear contribution to the pressure drop occurs for all flow rates, however, at large flow rates there is also an inertial correction to the pressure drop. In this paper we describe an approximate method that corrects for both shear and inertial effects. With these effects recognised and corrected for, the measured Trouton ratios are reduced to around three. Received: 15 December 1997 Accepted: 16 March 1998  相似文献   

13.
In this work we use in the simulation of a viscoelastic turbulent channel flow a modification of the finitely extensible of non-linear elastic dumbbells with the Peterlin approximation (FENE-P) constitutive model for dilute polymer solutions, applicable to high extensional deformations. The new feature introduced by this modification is that the free energy of the polymer (since it is assumed to be entirely entropically driven) remains always bounded (FENE-PB). The characteristics of the model under steady shear flow, pure elongational flow and transient extensional behavior are presented. It is found that the FENE-PB model is more shear thinning than FENE-P. Most importantly, it also shows a higher extensional viscosity than the FENE-P model. Although the steady-state Trouton ratio asymptotically reaches at high extensional rates the same limit as the FENE-P model, the transition from the Newtonian value is sharper and faster. We use the FENE-PB model in direct numerical simulations (DNS) of viscoelastic turbulent channel flow using spectral approximations. The results for various statistics of the flow and the polymer conformation, when compared against those obtained with the original FENE-P model and the same rheological parameters, show an enhanced polymer-induced drag reduction effect and enhanced deformation of the polymer molecules. This indicates that it is not only the asymptotic but also details from the extensional rheological behavior that matter in quantitatively specifying turbulent viscoelastic flow behavior.  相似文献   

14.
Shear and elongational viscosity measurements were performed on low-density polyethylene/phosphate glass (LDPE/Pglass) hybrid materials in the liquid state. Under shear deformation, the hybrids with low concentrations of Pglass showed a Newtonian region at low frequencies, followed by shear-thinning behavior at high frequencies. High Pglass concentrations displayed shear-thinning behavior over the whole range of frequencies studied. Deviations from the log-additivity rule for viscosity were found to be compositionally dependent and generally indicated an immiscible mixture. The elongational viscosity of the hybrids increased at very low Pglass concentrations (1–2 vol.% Pglass) and then was drastically reduced at higher concentrations (i.e., >10 vol.% Pglass). In addition, elongational flow was found to induce the formation of Pglass fibrils in hybrids containing at least 10 vol.% Pglass. This was correlated to the elongational capillary number; the critical elongational capillary number was estimated to be 0.22. The elongational deformation was also found to greatly increase the overall crystallinity of the system due to molecular orientation of the LDPE polymer chains as confirmed by wide angle X-ray diffraction. A critical composition of 5 vol.% Pglass was found to be the point at which LDPE hybrid rheological properties, molecular orientation, and morphology changed drastically.  相似文献   

15.
Viscosity measurements have been carried out on blends of polybuty-leneterephthalate (PBT) and a liquid crystalline copolyesteramide (LCP). The flow curves of the blends with LCP content larger than 20%, show a behavior similar to that of the pure LCP, with a rapid rise of the viscosity at low shear rates. The viscosity-composition curves exhibit a deep minimum at low LCP content which may be mainly attributed to the lack of interactions between the two phases.  相似文献   

16.
Long glass fiber-filled polypropylene (PP) composites are produced by pultrusion, and the extrudate is cut at different lengths producing composites containing long fibers of controlled length. The rheological properties of such composites in the molten state have been studied using different rheometers. A capillary rheometer has been constructed and mounted on a molding-injection machine. The shear viscosity of filled PP determined from the capillary rheometer, after corrections for entrance effects, was found to be very close to that of unfilled PP. However, large excess pressure losses at the capillary entrance were observed and these data have been used to obtain an apparent elongational viscosity. The apparent elongational viscosity was shown to be considerably larger than the shear viscosity for PP and filled PP, and it increased markedly with fiber length and fiber content. Rotational rheometers with a parallel-plate geometry were used to investigate the viscoelastic properties of these composites and their behavior was found to be non-linear, exhibiting a yield stress. A model is proposed to describe the shear viscosity from a solid-like behavior at low stresses to fluid-like behavior at high shear stresses taking into account fiber content and orientation. A modified model, proposed for elongational flow, describes relatively well the apparent elongational data.  相似文献   

17.
Experimental results for intrinsic viscosity and for intrinsic complex viscosity of polymer solutions were compared with the rheological predictions of the finitely extensible, nonlinear elastic (FENE) dumbbell theory of a dilute suspension. The FENE dumbbell adequately models the intrinsic viscosity of flexible polymers, but less successfully portrays the behavior in small amplitude oscillatory motion. Expressions for the high frequency asymptotic limit of the intrinsic complex viscosity of a FENE dumbbell suspension, and the mean-square end-to-end distance of FENE dumbbells in steady shear flow are given.  相似文献   

18.
An approximate analysis is presented for the flow of fluids through planar and axisymmetric contractions. Energy principles are employed to relate the entry pressure drop to flow rate and fundamental rheometric properties. One of the aims of the analysis is to investigate the influence of extensional viscosity on such flows, particularly with regard to the occurrence and enhancement of vortex motion in the entry corners.For the sake of mathematical simplicity, independent power-law models are used to represent the shear and extensional viscosity functions. The analysis indicates that, once significant vortex motion is present, enhancement occurs whenever the Trouton ratio is an increasing function of shearrate (or stretch-rate). It is readily seen how the occurrence of vortices serves as a stress relief mechanism. Indeed, for highly stretch-thickening materials, the entry pressure drop is seen to be dominated by shear properties.The power-law parameters of the extensional viscosity function may be obtained in a straight-forward way from entry pressure drop versus flow rate data.Finally, the extension and application of the analysis to other similar flows, such as through converging nozzles, is briefly discussed.  相似文献   

19.
A theory of extrudate swell for short, intermediate or long dies is presented. In our experiment, we consider that the swelling phenomenon is mainly due to the recoverable elongational strain induced by the converging flow at the die entrance, as well as by recoverable shear strain originating within the die. From these concepts, an equation has been derived for the quantitative prediction of extrudate swell from the elastic material properties such as the entrance pressure drop, the relaxation modulus and the recoverable shear strain. Excellent agreement is found between predicted and measured values of extrudate swell obtained on commercial polystyrene melt, using capillaries of length-to-diameter ratios ranging from 1 to 20 and in a wide range of shear rates.  相似文献   

20.
The rheology of a system must be explored not only in viscometric flows, but also in other flow classes, and so, we present some results for the axisymmetric elongational flow of non-colloidal suspensions of spheres. We compare our results with data from shear flows using the same matrices and spheres. We have experimented with non-colloidal suspensions of 40-μm diameter polystyrene spheres with volume fractions (?) varying from 0.3 to 0.5. Two matrix fluids were used—one was a near-Newtonian polydimethyl siloxane of 12 Pa-s viscosity and the other was a variant of the M1 Boger fluid sample of Sridhar which we call M1*. We did not find that the Trouton ratio for either of these fluids was 3; generally, the ratio was larger. We investigated the role of sphere roughness using spheres roughened to 5.3 % of the radius in a 50 % suspension in silicone oil and found an increase of elongational viscosity of about 65 % which is comparable with the 60 % increase in shear viscosity with roughness noted previously. For the silicone oil matrix, we found no rate effect, with very little strain-hardening. By contrast, the M1-type matrix suspensions showed strain-hardening and an increase of elongational viscosity with elongation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号