首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have studied the release curve for microcapsules with size distribution. On the basis of an analogy to the relaxation phenomena with multiple characteristic times, we propose a stretched exponential release curve for the system with size distribution and relate the release curve to the size distribution function of the microcapsule. This method was successfully applied to the transfer of azo-pigments from inner medium of dioctyl phthalate to dispersing medium of methanol through poly(ureaurethane) microcapsule membrane.  相似文献   

4.
Silver nanoparticles of 10, 18, and 23 nm were synthesized in aqueous medium by chemical reduction of silver nitrate in excess of sodium borohydride. Modification of polyelectrolyte shells with synthesized silver nanoparticles was performed using the layer-by-layer approach. Remote opening of the polyelectrolyte/silver capsules was performed with a CW Nd:YAG FD laser with an average incident power output up to 70 mW. Capsules with a mixture of 10 and 18 nm silver nanoparticles in its polyelectrolyte shell were ruptured after less than 7 s of laser irradiation, while microcapsules with 23 nm silver nanoparticles in the shell were broken after 11 s of laser treatment and 10 nm silver nanoparticles were broken after 26 s.  相似文献   

5.
Using a computational model, we investigate the motion of microcapsules inside a microchannel that encompasses a narrow constriction. The microcapsules are composed of a compliant, elastic shell and an encapsulated fluid; these fluid-filled shells model synthetic polymeric microcapsules or biological cells (e.g., leukocytes). Driven by an imposed flow, the capsules are propelled along the microchannel and through the constricted region, which is formed by two pillars that lie in registry, extending from the top and bottom walls of the channels. The tops of these pillars (facing into the microchannel) are modified to exhibit either a neutral or an attractive interaction with the microcapsules. The pillars (and constriction) model topological features that can be introduced into microfluidic devices or the physical and chemical heterogeneities that are inherently present in biological vessels. To simulate the behavior of this complex system, we employ a hybrid method that integrates the lattice Boltzmann model (LBM) for fluid dynamics and the lattice spring model (LSM) for the micromechanics of elastic solids. Through this LBM/LSM technique, we probe how the capsule's stiffness and interaction with the pillars affect its passage through the chambers. The results yield guidelines for regulating the movement of microcarriers in microfluidic systems and provide insight into the flow properties of biological cells in capillaries.  相似文献   

6.
The encapsulation and fractionated release of nucleic acids on vesicular packing (VP) materials have been investigated. The earlier described dependence of the permeation of nucleic acid molecules through the vesicle membranes on the salt concentration is a necessary precondition for both encapsulation and fractionation. Encapsulation is achieved by applying a suitable sample onto a VP column that has been equilibrated with a high-salt buffer. In that buffer the sample molecules are permeable. Immediately after sample application, elution is started with a low-salt buffer, from which the sample molecules are excluded. At the front between the two buffers the permeability changes, and some of the sample molecules distributed inside the vesicles cannot pass through the membranes. These encapsulated molecules can be released by increasing the salt concentration in the eluent. If the encapsulated nucleic acid sample is polydisperse, a stepwise or linear increase in the salt concentration leads to a fractionated release. The fractions obtained differ in their molecular size composition.  相似文献   

7.
Magnetite/poly (lactic acid) (PLA) composite microcapsules with controllable composition and magnetic property were synthesized by a facile interfacial coprecipitation joint double emulsion–solvent evaporation process. In this method, the interfacial coprecipitation was performed at the water-in-oil (W1/O) interface and the generated Fe3O4 nanoparticles were incorporated into PLA microcapsules simultaneously. The magnetite content of the resultant composite microcapsules can be controlled as high as 38 wt.%. This novel method not only simplifies the fabrication process but also improves the magnetic property of composite microcapsules.  相似文献   

8.
Neuron cells uptake of biodegradable and synthetic polymeric microcapsules functionalized with aggregates of gold nanoparticles incorporated into their shells is demonstrated in situ. In addition to traditionally used optical microscopy, electron microscopy is used both for higher-resolution imaging and for confirming the uptake by focused ion beam cross-sectioning of specific cells in situ. Subsequently, physical methods of release are compared to chemical methods wherein laser-induced intracellular release of dextran molecules into the cytosol of hippocampal neuron cells is studied in comparison to biodegradation. Implications of this work for neuroscience, bio-medicine and single cell studies are discussed.  相似文献   

9.
We explored using a magnetic field to modulate the permeability of polyelectrolyte microcapsules prepared by layer-by-layer self-assembly. Ferromagnetic gold-coated cobalt (Co@Au) nanoparticles (3 nm diameter) were embedded inside the capsule walls. The final 5 mum diameter microcapsules had wall structures consisting of 4 bilayers of poly(sodium styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH), 1 layer of Co@Au, and 5 bilayers of PSS/PAH. External alternating magnetic fields of 100-300 Hz and 1200 Oe were applied to rotate the embedded Co@Au nanoparticles, which subsequently disturbed and distorted the capsule wall and drastically increased its permeability to macromolecules like FITC-labeled dextran. The capsule permeability change was estimated by taking the capsule interior and exterior fluorescent intensity ratio using confocal laser scanning microscopy. Capsules with 1 layer of Co@Au nanoparticles and 10 polyelectrolyte bilayers are optimal for magnetically controlling permeability. A theoretical explanation was proposed for the permeability control mechanisms. "Switching on" of these microcapsules using a magnetic field makes this method a good candidate for controlled drug delivery in biomedical applications.  相似文献   

10.
11.
Plasmon-resonant nanoparticle complexes show highly promising potential for light-triggered, remote-controlled delivery of oligonucleotides on demand, for research and therapeutic purposes. Here we investigate the light-triggered release of DNA from two types of nanoparticle substrates: Au nanoshells and Au nanorods. Both light-triggered and thermally induced release are distinctly observable from nanoshell-based complexes, with light-triggered release occurring at an ambient solution temperature well below the DNA melting temperature. Surprisingly, no analogous measurable release was observable from nanorod-based complexes below the DNA melting temperature. These results suggest that a nonthermal mechanism may play a role in plasmon resonant, light-triggered DNA release.  相似文献   

12.
pH controlled release of chromone from chromone-Fe3O4 nanoparticles   总被引:1,自引:0,他引:1  
We report a new strategy for coupling chromone to Fe3O4 nanoparticles. The chromone-Fe3O4 NP conjugate shows a dramatic increase in chromone solubility in cell culture medium from less than 2.5 to 633 microg/ml, leading to the enhanced chromone uptake by HeLa cells. Chromone can be released at low pH and as a result, the chromone-Fe3O4 conjugate is much more efficient in inhibiting the HeLa cell proliferation. Such chromone-Fe3O4 NPs are promising as a powerful multifunctional delivery system for both chromone-based diagnostic and therapeutic applications.  相似文献   

13.
Asymmetric bifunctional silyl ether (ABS) prodrugs of chemotherapeutics were synthesized and incorporated within 200 nm × 200 nm particles. ABS prodrugs of gemcitabine were selected as model compounds because of the difficulty to encapsulate a water-soluble drug within a hydrogel. The resulting drug delivery systems were degraded under acidic conditions and were found to release only the parent or active drug. Furthermore, changing the steric bulk of the alkyl substituents on the silicon atom could regulate the rate of drug release and, therefore, the intracellular toxicity of the gemcitabine-loaded particles. This yielded a family of novel nanoparticles that could be tuned to release drug over the course of hours, days, or months.  相似文献   

14.
Microcapsules with an oil core surrounded by a polymeric shell have been prepared by the controlled phase separation of polymer dissolved within the oil droplets of an oil-in-water emulsion. The dispersed oil phase consists of the shell polymer (polystyrene), a good solvent for the polymer (dichloromethane), and a poor solvent for the polymer (typically hexadecane). Removal of the good solvent results in phase separation of the polymer within the oil droplets. If the three interfacial tensions between the core oil, the shell-forming polymer, and the continuous phase are of the required relative magnitudes, a polymer shell forms surrounding the poor solvent. A UV-responsive organic molecule was added to the oil phase, prior to emulsification, to investigate the release of a model active ingredient from the microcapsules. This molecule should be soluble in the organic core but also have some water solubility to provide a driving force for release into the continuous aqueous phase. As the release rate of the active ingredient is a function of the thickness of the polymeric shell, for controlled release applications, it is necessary to control this parameter. For the preparative method described here, the thickness of the shell formed is directly related to the mass of polymer dissolved in the oil phase. The rate of volatile solvent removal influences the porosity of the polymer shell. Rapid evaporation leads to cracks in the shell and a relatively fast release rate of the active ingredient. If a more gentle evaporation method is employed, the porosity of the polymer shell is decreased, resulting in a reduction in release rate. Cross-linking the polymer shell after capsule formation was also found to decrease both the release rate and the yield of the active ingredient. The nature of the oil core also affected the release yield.  相似文献   

15.
16.
Liu Q  Yu B  Ye W  Zhou F 《Macromolecular bioscience》2011,11(9):1227-1234
A systematic study of the permeation of small molecules through Pdop microcapsules is reported. The zwitterionic Pdop microcapsules are prepared by oxidative polymerization of dopamine on polystyrene microspheres followed by core removal with THF. Rhodamine 6G, methyl orange and alizarin red are chosen as differently charged probing dyes. The loading amount is affected by pH and dye concentration. Highly selective and unidirectional uptake and release of charged molecules through Pdop microcapsules can be achieved by controlling pH value: at low pH, the Pdop particles incorporate cationic dye (rhodamine 6G); at high pH, they incorporate anionic dyes (methyl orange and alizarin red). In each case, the uptake is highly selective.  相似文献   

17.
Monodisperse silica particles coated with azobenzene polymer (PAzo) shell were synthesized through distillation precipitation polymerization. Robust PAzo microcapsules were obtained after selective removal of the silica templates by hydrofluoric acid (HF) etching. These PAzo microcapsules, confirmed by transmission electron microscopy (TEM) investigation, had excellent reversible photoisomerization with transformation between trans and cis isomers under ultraviolet (UV) and visible lights. Due to their compatibility with PAzo, acetonitrile would be trapped in the network of the shell during polymerization. Pore channels in the shell, confirmed by nitrogen adsorption–desorption test, would be produced after acetonitrile evaporation. Loading and release of rhodamine B (RhB) molecules in PAzo microcapsules were carried out and indicated that cis azobenzene showed larger pore diameter (named as “open switch”) under UV light which favored permeation of RhB molecules, while trans structure (named as “closed switch”) under visible light slowed down the process. In addition, both release profiles obeyed pure Fickian diffusion with a power law of t0.42. Diffusion coefficient of RhB from PAzo microcapsules under visible light (1.47 × 10?12 cm2/s) was lower than that under UV light (2.12 × 10?12 cm2/s).  相似文献   

18.
Carbon microcapsules containing silicon (Si) nanoparticles (NPs) were prepared from silicon-embedded polymer microspheres. The precursors, polymeric microspheres containing silicon nanoparticles were fabricated by a facile emulsion polymerization with surfactants, sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The effects of monomer, surfactant concentration, and ionic character of surfactant on the formation of microspheres were demonstrated. The successful fabrication of polystyrene/polydivinylbenzene microspheres with Si NPs was confirmed by scanning electron microscopy. Subsequent thermal treatment produced carbon microcapsules having Si NPs. Volume shrinkage of polymer spheres during carbonization step resulting in the formation of internal free spaces in carbon microcapsules is the critical process in this experiment, which can accommodate volume changes of Si NPs during Li ion charge/discharge processes. The successful encapsulation of Si NPs with exterior carbon shell was clearly shown by transmission electron microscopy and X-ray diffraction. The change in size distribution and structure of polymer and carbon microspheres was also revealed. The cyclic performances of these Si@C microcapsules were measured with lithium battery half cell tests.  相似文献   

19.
The evaporation kinetics of pure Romascone® (methyl 2,2‐dimethyl‐6‐methylene‐1‐cyclohexanecarboxylate) and Romascone® when mixed with vinyl acetate (VAc) nanoparticles have been determined by using thermogravimetric analysis. For pure Romascone®, the evaporation rate follows an Arrhenius dependence with temperature. When Romascone® is mixed with VAc nanoparticles, two evaporation mechanisms are identified depending on the presence of comonomer and crosslinking degree. (a) Evaporation limited by the presence of non‐interactive nanoparticles. The evaporation rate is governed by the evolution of the equilibrium vapor pressure that depends on the volume fraction of volatile molecules. (b) Evaporation limited by the diffusion of volatile molecules through a polymeric particle wall. Since the diffusion depends on the physical state or structure of the polymeric nanoparticle phase, the volume fraction of volatile molecules is a determinant parameter. Furthermore, a sudden modification in the evolution of the diffusion coefficient with volatile volume fraction gives rise to discussion on phase transition. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Priya S  Kaviyarasan T  Berchmans S 《The Analyst》2012,137(7):1541-1543
In this work we have demonstrated that nitric oxide can be monitored spectrophotometrically using cyclodextrin encapsulated ferrocene. The detection course showed the colour change from yellow to blue which can be detected with the naked eye. Also we describe the catalytic effect of gold nanoparticles in enhancing nitric oxide release from S-nitrosothiols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号