首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes methods for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) and compares them with each other and with multiconfigurational self-consistent field calculations. They are shown to be accurate and, as expected, the costs of their calculation scale more favorably with system size than post-Hartree-Fock calculations. The proposed methods are based on single-particle excitations and the associated Slater transition-state densities to overcome the problem of the unavailability of multielectron states in DFT which precludes a straightforward calculation of the matrix elements of the nuclear gradient operator. An iterative scheme employing linear-response theory was found to offer the best trade-off between accuracy and efficiency. The algorithms presented here have been implemented for doublet-doublet excitations within a plane-wave-basis and pseudopotential framework but are easily generalizable to other excitations and basis sets. Owing to their fundamental importance in cases where the Born-Oppenheimer separation of motions is not valid, these derivative couplings can facilitate, for example, the treatment of nonadiabatic charge transfers, of electron-phonon couplings, and of radiationless electronic transitions in DFT.  相似文献   

2.
The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.  相似文献   

3.
The authors study the photodissociation reactions of pyrrole and N-methylpyrrole using first-principles molecular dynamics. The first excited state is described with restricted open-shell Kohn-Sham theory. They find a small barrier in the excited state potential energy surface. The possibility of energy redistribution near the Franck-Condon region leads to two different reaction channels in on-the-fly simulations on a single diabatic potential energy surface. The results are discussed in comparison with previous ab initio calculations and with experiments.  相似文献   

4.
We present molecular-dynamics simulations for 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and cyclopentadiene at finite temperature using periodic boundary conditions. These systems form weakly bound aggregates in the ground state and exhibit bond formation in the excited state. Monomeric excitation of an ensemble of butadiene molecules leads to a transfer of the excitation between two molecules in the excited state with an intermediate delocalization of the wave function over both moieties.  相似文献   

5.
It is argued that Kohn-Sham calculations on open-shell systems should be spin unrestricted in character. An application to the proton hyperfine constant in the methyl radical is presented. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
A method for calculating the UV-vis spectra of molecules with spatially degenerate ground states using time-dependent density-functional theory (TDDFT) is proposed. The new transformed reference via an intermediate configuration Kohn-Sham TDDFT (TRICKS-TDDFT) method avoids the difficulties caused by the multireference nature of spatially degenerate states by rather than utilizing the ground state instead taking a nondegenerate excited state with desirable properties as the reference for the TDDFT calculation. The scope and practical application of the method are discussed. Like all open-shell TDDFT calculations this method at times suffers from the inability to produce transitions to states that are eigenfunctions of the total spin operator. A technique for alleviating this difficulty to some extent is proposed. The applicability and accuracy of the TRICKS-TDDFT method is demonstrated through example calculations of several d(1) and d(2) transition metal complexes with tetrahedral and octahedral symmetries. For the most part, the results of these calculations are similar in quality to to those obtained from standard TDDFT calculations.  相似文献   

7.
We demonstrate an accurate method for extracting Heisenberg exchange-coupling constants (J) from density-functional theory (DFT) calculations. We note that the true uncoupled low-spin state of a given molecule should be identified with the ground state of the system subject to a constraint on the spin density of the atoms. Using an efficient optimization strategy for constrained DFT we obtain these states directly, leading to a simple, physically motivated formula for J. Our method only depends on state energies and their associated electron densities and assigns no unphysical meaning to the Kohn-Sham determinant or individual orbitals. We study several bimetallic transition-metal complexes and find that the constrained DFT approach is competitive with, if not better than, the best broken symmetry DFT results. The success of constrained DFT in these cases appears to result from a balanced elimination of self-interaction error and static correlation from the simulation.  相似文献   

8.
The application of theoretical methods based on density-functional theory is known to provide atomic and cell parameters in very good agreement with experimental values. Recently, construction of the exact Hartree-Fock exchange gradients with respect to atomic positions and cell parameters within the Gamma-point approximation has been introduced. In this article, the formalism is extended to the evaluation of analytical Gamma-point density-functional atomic and cell gradients. The infinite Coulomb summation is solved with an effective periodic summation of multipole tensors. While the evaluation of Coulomb and exchange-correlation gradients with respect to atomic positions are similar to those in the gas phase limit, the gradients with respect to cell parameters needs to be treated with some care. The derivative of the periodic multipole interaction tensor needs to be carefully handled in both direct and reciprocal space and the exchange-correlation energy derivative leads to a surface term that has its origin in derivatives of the integration limits that depend on the cell. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm to optimize one-dimensional and three-dimensional periodic systems at the density-functional theory and hybrid Hartree-Fock/density-functional theory levels. We also report the full relaxation of forsterite supercells at the B3LYP level of theory.  相似文献   

9.
The recently developed restricted open-shell, size extensive, left eigenstate, completely renormalized (CR), coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as ROCCL, is compared with the unrestricted CCSD(T) [UCCSD(T)] and multireference second-order perturbation theory (MRMP2) methods to assess the accuracy of the calculated potential energy surfaces (PESs) of eight single bond-breaking reactions of open-shell species that consist of C, H, Si, and Cl; these types of reactions are interesting because they account for part of the gas-phase chemistry in the silicon carbide chemical vapor deposition. The full configuration interaction (FCI) and multireference configuration interaction with Davidson quadruples correction [MRCI(Q)] methods are used as benchmark methods to evaluate the accuracy of the ROCCL, UCCSD(T), and MRMP2 PESs. The ROCCL PESs are found to be in reasonable agreement with the corresponding FCI or MRCI(Q) PESs in the entire region R = 1-3Re for all of the studied bond-breaking reactions. The ROCCL PESs have smaller nonparallelity error (NPE) than the UCCSD(T) ones and are comparable to those obtained with MRMP2. Both the ROCCL and UCCSD(T) PESs have significantly smaller reaction energy errors (REE) than the MRMP2 ones. Finally, an efficient strategy is proposed to estimate the ROCCL/cc-pVTZ PESs using an additivity approximation for basis set effects and correlation corrections.  相似文献   

10.
We report the implementation of a method for the calculation of optical rotation. This method is based on the time-dependent density-functional theory and utilizes time-periodic magnetic-field-dependent basis functions. The calculations are based on a density fit. It is demonstrated that additional terms in the analytical expression appearing from derivatives of the approximated Coulomb potential are necessary to provide the gauge-origin independence of the results within a given numerical accuracy. Contributions from these terms also restore the symmetry between the electric and magnetic perturbations in the optical rotation tensor.  相似文献   

11.
We present a simple and efficient embedding scheme for the wave-function based calculation of the energies of local excitations in large systems. By introducing an embedding potential obtained from density-functional theory (DFT) it is possible to describe the effect of an environment on local excitations of an embedded system in wave-function theory (WFT) calculations of the excitation energies. We outline the implementation of such a WFT-in-DFT embedding procedure employing the ADF, Dalton and DIRAC codes, where the embedded subsystem is treated with coupled cluster methods. We then evaluate this procedure in the calculation of the solvatochromic shift of acetone in water and of the f-f spectrum of NpO(2)(2+) embedded in a Cs(2)UO(2)Cl(4) crystal and find that our scheme does effectively incorporate the environment effect in both cases. A particularly interesting finding is that with our embedding scheme we can model the equatorial Cl(-) ligands in NpO(2)Cl(4)(2-) quite accurately, compared to a fully wavefunction-based calculation, and this opens up the possibility of modeling the interaction of different ligands to actinyl species with relatively high accuracy but at a much reduced computational cost.  相似文献   

12.
A detailed derivation of the frozen-orbital second-order perturbation theory (MP2) analytic gradient in the spin-orbital basis is presented. The summation ranges and modification of the MP2 gradient terms that result from the frozen-orbital approximation are clearly identified. The frozen-orbital analytic gradients for unrestricted MP2 and closed-shell MP2 are determined from the spin-orbital derivation. A discussion of useful implementation procedures is included. Timings from full and frozen-orbital MP2 gradient calculations on the molecule silicocene (the silicon analog of the sandwich compound ferrocene) are also presented.  相似文献   

13.
14.
Spin-unrestricted Kohn-Sham (KS) solutions are constructed from accurate ab initio spin densities for the prototype doublet molecules NO(2), ClO(2), and NF(2) with the iterative local updating procedure of van Leeuwen and Baerends (LB). A qualitative justification of the LB procedure is given with a "strong" form of the Hohenberg-Kohn theorem. The calculated energies epsilon(isigma) of the occupied KS spin orbitals provide numerical support to the analogue of Koopmans' theorem in spin-density functional theory. In particular, the energies -epsilon(ibeta) of the minor spin (beta) valence orbitals of the considered doublet molecules correspond fairly well to the experimental vertical ionization potentials (VIPs) I(i) (1) to the triplet cationic states. The energy -epsilon(Halpha) of the highest occupied (spin-unpaired) alpha orbital is equal to the first VIP I(H) (0) to the singlet cationic state. In turn, the energies -epsilon(ialpha) of the major spin (alpha) valence orbitals of the closed subshells correspond to a fifty-fifty average of the experimental VIPs I(i) (1) and I(i) (0) to the triplet and singlet states. For the Li atom we find that the exact spin densities are represented by a spin-polarized Kohn-Sham system which is not in its ground state, i.e., the orbital energy of the lowest unoccupied beta spin orbital is lower than that of the highest occupied alpha spin orbital ("a hole below the Fermi level"). The addition of a magnetic field in the -z direction will shift the beta levels up so as to restore the Aufbau principle. This is an example of the nonuniqueness of the mapping of the spin density on the KS spin-dependent potentials discussed recently in the literature. The KS potentials may no longer go to zero at infinity, and it is in general the differences nu(ssigma)( infinity )-epsilon(isigma) that can be interpreted as (averages of) ionization energies. In total, the present results suggest the spin-unrestricted KS theory as a natural one-electron independent-particle model for interpretation and assignment of the experimental photoelectron spectra of open-shell molecules.  相似文献   

15.
16.
For a rigorous quantum simulation of nonadiabatic dynamics of electrons and nuclei, knowledge of not only the first-order but also the second-order nonadiabatic couplings (NACs) is required. Here, we propose a method to efficiently calculate the second-order NAC from time-dependent density functional theory (TDDFT), on the basis of the Casida ansatz adapted for the computation of first-order NAC, which has been justified in our previous work and can be shown to be valid for calculating second-order NAC between ground state and singly excited states within the Tamm-Dancoff approximation. Test calculations of the second-order NAC in the immediate vicinity of Jahn-Teller and Renner-Teller intersections show that calculation results from TDDFT, combined with modified linear response theory, agree well with the prediction from the Jahn-Teller/Renner-Teller models. Contrary to the diverging behavior of the first-order NAC near all types of intersection points, the Cartesian components of the second-order NAC are shown to be negligibly small near Renner-Teller glancing intersections, while they are significantly large near the Jahn-Teller conical intersections. Nevertheless, the components of the second-order NAC can cancel each other to a large extent in Jahn-Teller systems, indicating the background of neglecting the second-order NAC in practical dynamics simulations. On the other hand, it is shown that such a cancellation becomes less effective in an elliptic Jahn-Teller system and thus the role of second-order NAC needs to be evaluated in the rigorous framework. Our study shows that TDDFT is promising to provide accurate data of NAC for full quantum mechanical simulation of nonadiabatic processes.  相似文献   

17.
We introduce a new implementation of time-dependent density-functional theory which allows the entire spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a single standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a superoperator formulation of linearized time-dependent density-functional theory, we first represent the dynamical polarizability of an interacting-electron system as an off-diagonal matrix element of the resolvent of the Liouvillian superoperator. One-electron operators and density matrices are treated using a representation borrowed from time-independent density-functional perturbation theory, which permits us to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is evaluated through a newly developed algorithm based on the nonsymmetric Lanczos method. Each step of the Lanczos recursion essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian. Suitable extrapolation of the Lanczos coefficients allows for a dramatic reduction of the number of Lanczos steps necessary to obtain well converged spectra, bringing such number down to hundreds (or a few thousands, at worst) in typical plane-wave pseudopotential applications. The resulting numerical workload is only a few times larger than that needed by a ground-state Kohn-Sham calculation for a same system. Our method is demonstrated with the calculation of the spectra of benzene, C(60) fullerene, and of chlorophyll a.  相似文献   

18.
The coupled clusters singles and doubles (CCSD ) method for calculations of open-shell systems with the single restricted Hartree–Fock (ROHF ) reference determinant is extended by the noniterative triples to give CCSD(T) . Our approach profits from the fact that (a) single- and double-excitation amplitudes are spin-adapted, which directly leads to a computationally less demanding algorithm than are nonadapted procedures and produces the spin-adapted CCSD wave function and (b) triple excitations calculated from converged spin-adapted (SA ) CCSD amplitudes are also obtained more effectively. Altogether, computer demands of our SA CCSD(T) approach, applicable to high-spin open-shell cases which are well represented by a single-determinant reference is comparable to that for closed-shell systems. Our approach is not based on semicanonical orbitals, applied by Bartlett's group. However, we compare some other possible choices of ROHF orbitals to this “standard.” Numerical results for a series of atoms and molecules demonstrate little sensitivity to this selection. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
A few open-shell molecules are taken as examples in order to examine the performance of the open-shell perturbation theory for electron correlation(J Chem Theory Comput,2009,5:931–936).The convergence of the perturbation series is shown to be stable for the doublet state of NH2 at both the equilibrium and stretched geometries.The equilibrium bond lengths,and harmonic and anharmonic vibrational frequencies are calculated for NO(X2),OH(X2),CH(X2)and NH(X2)with different second-order perturbation theories at t...  相似文献   

20.
The performance of a recently proposed scaled one-electron Hamiltonian (SOEH ) model is tested against parallel sets of restricted open-shell calculations by the method of Roothaan. It is found that the energy calculated by SOEH model, in general, lies slightly higher than the energy computed by the restricted open-shell method of Roothaan lending credibility to the application of variational argument to the scaled pseudoenergy functional (Eav) for deriving the SOEH model. The numerical stability of the converged SOEH energy with respect to changes in trial vectors indicates the reliability of the method. The SOEH model is shown to perform well in the calculation of geometries of radicals and ions. The convergence behavior of the SOEH model is compared with that of the restricted open-shell method of Roothaan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号