首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Applying molecular-beam methods to a nanolithographically prepared planar PdSiO2 model catalyst, we have performed a detailed study of the kinetics of CO oxidation. The model catalyst was prepared by electron-beam lithography, allowing individual control of particle size and position. The sample was structurally characterized by atomic force microscopy and scanning electron microscopy before and after reaction. In the kinetic experiments, the O-rich and CO-rich regimes were investigated systematically with respect to their transient and steady-state behaviors, both under bistable and monostable reaction conditions. Separate molecular beams were used in order to supply the reactants, allowing individual control over the reactant fluxes. The desorbing CO2 was detected by both angle-resolved and angle-integrated mass spectrometries. The experimental results were analyzed using different types of microkinetic models, including a detailed reaction-diffusion model, which takes into account the structural parameters of the catalyst as well as scattering of the reactants from the support. The model quantitatively reproduces the results as a function of the reactant fluxes and the surface temperature. Various kinetic effects observed are discussed in detail on the basis of the model. Specifically, it is shown that under conditions of limited oxygen mobility, the switching behavior between the kinetic regimes is largely driven by the surface mobility of CO.  相似文献   

2.
Wang  ZhaoWen  Li  Bin  Chen  MingShu  Weng  WeiZheng  Wan  HuiLin 《中国科学:化学(英文版)》2010,53(9):2047-2056
Science China Chemistry - Supporting Pd catalysts characterized significant different size distribution were obtained using PdCl2, [Pd(NH3)4](NO3)2 and Pd(acac)2 as precursors. High-resolution...  相似文献   

3.
The objective of this work is to elucidate controlling mechanisms in NOx reduction, develop reduced‐order reaction models, and analyze the reactor performance using the reduced‐order reaction model for the NO–CO reaction. We start with the microkinetic model on platinum, which describes the mechanism of catalytic reduction of NO by CO. The formation of the main product N2O and the competitive formation of the side product N2 are accounted for in the microkinetic model. Sensitivity and reaction path analysis have been carried out to determine the rate‐limiting steps as well as the most abundant reactive intermediates in the system. Owing to the differences between system performance at high and low temperatures, the model has been analyzed in detail in these temperature regimes. Two closed‐form expressions, corresponding to the two global reactions involved, have been derived. The characteristic features of the microkinetic model such as the sharp increase in NO conversion and the selectivity to N2O are captured well by the reduced model. The reduced‐order model has been extended to the rhodium catalyst as well. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 577–585, 2012  相似文献   

4.
The results of temperature-programmed reaction experimental studies and mathematical modeling of self-sustained oscillations within an inverse temperature hysteresis in CO oxidation over Pd catalyst are presented. The experimental data demonstrate the influence of the reaction medium on the catalyst activity under reaction conditions. Under oxygen excess in the feeding gas mixture and high temperature, the defects appeared on the initially flat surface of metallic palladium due to deep oxidation of palladium (three-dimensional PdO nanoparticles were observed). The palladium oxide reduced under cooling of the catalytic system, and the catalyst surface became flat again. To take into account these variations of the palladium surface structure, we consider the piecewise-constant dependence of the rate constant of some reaction step on the concentrations of oxygen species, namely, the dissolved oxygen or oxide in the palladium bulk. The proposed model of the process in the cascade of continuous stirred-tank reactors that account for these dependences qualitatively describes the inverse temperature hysteresis as well as the oscillatory dynamics within the hysteresis loop which were obtained experimentally.  相似文献   

5.
In order to modelize the CO dissociation observed on palladium particles, by means of Static Secondary Ion Mass Spectrometry, theoretical investigations were performed on small Pd clusters by using a local approximation of the density functional theory. Several types of defects were studied concerning their ability to dissociate the CO molecule.  相似文献   

6.
The dynamics of adsorbate structures during CO oxidation on Pt(111) surfaces and its effects on the reaction were studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. The lateral interaction energies between adsorbed species were calculated by the density functional theory method. Dynamic Monte Carlo simulations were performed for the oxidation reaction over a mesoscopic scale, where the experimentally determined activation energies of elementary paths were altered by the calculated lateral interaction energies. The simulated results reproduced the characteristics of the microscopic and mesoscopic scale adsorbate structures formed during the reaction, and revealed that the complicated reaction kinetics is comprehensively explained by a single reaction path affected by the surrounding adsorbates. We also propose from the simulations that weakly adsorbed CO molecules at domain boundaries promote the island-periphery specific reaction.  相似文献   

7.
Slin'ko MM  Ukharskii AA  Peskov NV  Jaeger NI 《Faraday discussions》2001,(120):179-95; discussion 197-213
For the oscillating oxidation of CO on a zeolite-supported palladium catalyst the transition to chaos could be observed in a very narrow region of the CO concentration in the feed. The reaction was carried out under the conditions of a continuous stirred tank reactor. A careful choice of the method for time series analysis led to the unambiguous identification of the intermittency-I route to chaos in the catalytic system despite the rather limited number of data points which can be acquired under normal pressure conditions. The route to chaos could be derived from the variation of the Fourier spectrum and the Poincare section as a function of the CO concentration in the feed. The embedding dimensions for the observed chaotic attractors of dE > or = 10 are much higher than the embedding dimensions obtained during UHV single crystal studies. High embedding dimensions indicate that the dynamic behaviour of the system has to be simulated with a distributed model which describes the collective behaviour of many Pd particles in the zeolite crystallite.  相似文献   

8.
Dynamics of spatiotemporal thermal patterns during the catalytic CO oxidation over Pd supported on a glass-fiber catalytic cloth rolled into a tube of 20 mm diameter and 80 mm length has been studied in a continuous flow reactor by IR thermography. A specially designed aluminum mirror built in the reactor provided image of the entire surface of the horizontally held catalytic tube. With flow in the main axial direction and through the tube surface, we observed periodic motions of a pulse, which was born downstream and propagated upstream. The temperature pulse motion was accompanied by conversion oscillations of CO2. With flow in the main axial direction, parallel to the surface, we observed a stationary hot zone after an oscillatory transient. These patterns can be simulated with a plug-flow-reactor-like heterogeneous reactor model that incorporates previously determined kinetic and transport parameters.  相似文献   

9.
CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programmed reaction.The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones.Model studies were performed to better understand the oxidation state,reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction conditions using an in situ infrared reflection absorption spectrometer(IRAS).Three O/Pd(100)model surfaces,chemisorbed oxygen covered surface,surface oxide and bulk-like surface oxide,were prepared and characterized by low-energy electron diffraction(LEED)and Auger electron spectroscopy(AES).The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface,and is unstable under the reaction conditions with sufficient CO.  相似文献   

10.
An optimization including electrostatic interactions has been performed for the parameters of an anisotropic united atoms intermolecular potential for benzene for thermodynamic and transport property prediction using Gibbs ensemble, isothermal-isobaric (NPT) Monte Carlo, and molecular dynamic simulations. The optimization procedure is based on the minimization of a dimensionless error criterion incorporating various thermodynamic data (saturation pressure, vaporization enthalpy, and liquid density) at ambient conditions and at 350 and 450 K. A comprehensive comparison of the new model is given with other intermolecular potentials taken from the literature. Overall thermodynamic, structural, reorientational, and translational dynamic properties of our optimized model are in very good agreement with experimental data. The new model also provides a good representation of the liquid structure, as revealed by three-dimensional spatial density functions and carbon-carbon radial distribution function. Shear viscosity variations with temperature and pressure are very well reproduced, revealing a significant improvement with respect to nonpolar models.  相似文献   

11.
Theoretical studies of the spatiotemporal dynamics of CO oxidation on Pt(100) and Pd(110) single crystal surfaces have been carried out by the kinetic Monte Carlo method. For both surfaces, Monte Carlo simulation has revealed oscillations of the CO2 formation rate and of the concentrations of adsorbed species. The oscillations are accompanied by wave processes on the model surface. Simulations have demonstrated that there is a narrow reaction zone when an oxygen wave propagates over the surface. The existence of this zone has been confirmed by experimental studies. Taking into account the anisotropy of the Pd(110) crystal has no effect on the oscillation period and amplitude, but leads to the formation of elliptic oxygen patterns on the surface. It is possible to obtain a wide variety of chemical waves (cellular and turbulent structures, spirals, rings, and strips) by varying the parameters of the computational experiment.  相似文献   

12.
CO oxidation over ceria-supported Au22 nanoclusters shows strong dependence on the support shape: the lattice oxygen in CeO2 rods is more reactive than in the cubes and thus make rods a superior support for Au nanoclusters in catalyzing low temperature CO oxidation.  相似文献   

13.
Employing the first-principles pseudopotential plane-wave methods and nudged-elastic-band simulations, we studied the reaction of CO oxidation on Pd-decorated Au(111) surface. We found that the contiguous Pd ensembles are required for the CO + O(2) reaction. Interestingly, Pd dimer is an active site for the two-step reaction of CO+O(2)→OOCO→CO(2)+O, and a low energy barrier (0.29 eV) is found for the formation of the intermediate metastable state (OOCO) compared to the barrier of 0.69 eV on Pd trimer. Furthermore, the residual atomic O in the CO + O(2) reaction can be removed by another CO on Pd dimer with the barrier of 0.56 eV close to the value of 0.52 eV on Pd monomer via Langmuir-Hinshelwood mechanism. The higher energy barriers (0.96 and 0.64 eV) are also found for the CO + O reaction on Pd trimers. The calculated results indicate Pd dimer is highly reactive for CO oxidation by O(2) via association mechanism on Pd-decorated Au(111) surface.  相似文献   

14.
15.
16.
Thermo-progammed desorption and catalytic CO oxidation has been used to investigate the influence of the Pd/Al2O3 particle size on the CO adsorption and CO and O2 reactive sticking coefficient. Both CO molecule saturation density and reactive sticking coefficients increase with average particle diameter decreasing.  相似文献   

17.
18.
The rotational and vibrational energies of product CO(2) in the CO oxidation on Pd(110) surfaces were measured as functions of desorption angles. The antisymmetric vibrational temperature (T(a)) was separately determined from the other vibrational modes from the normalized chemiluminescence intensity. The rotational temperature (T(rot)) and vibrational temperature averaged over the symmetric and bending modes (T(sb)) were then determined by the position and width of spectra by comparison with simulated spectra. On Pd(110)-(1x1), with increases in the desorption angle, T(a), T(sb) and T(rot) decreased in the [001] direction but remained constant in [11[combining macron]0]. However, such anisotropy disappeared when the ratio of exposure of O(2) to that of CO decreased, resulting in a gradual decrease of the three temperatures with increases in the desorption angle. On Pd(110) with missing rows, the three temperatures increased in [001] but decreased in [11[combining macron]0], indicating that the transition state changes with the geometry of the substrate. On Pd(110) with missing rows, T(a) was significantly lower than T(sb), although T(a) was close to or higher than T(sb) on Pd(110)-(1x1). However, there was no significant difference in the angular dependence between T(a), T(sb) and T(rot).  相似文献   

19.
采用密度泛函理论(DFT)计算模拟Pd平板和Pd_(38)团簇上的CO催化氧化过程,分析了CO在Pd催化剂表面上的氧化反应机理。结果表明,在Pd_(38)团簇模型上CO催化氧化的决速步骤是O_2的解离,反应能垒为0.65 eV,而在Pd平板模型上的决速步骤是CO的氧化,其反应能垒为0.87 eV。对比决速步骤的活化能发现,CO在Pd_(38)团簇上的氧化反应更易进行,说明CO氧化更易在小颗粒催化剂表面上进行,即Pd催化剂的活性与活性组分颗粒大小相关,活性组分颗粒越小,暴露的活性位点越多,其催化活性也越高。  相似文献   

20.
We have performed density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on a close-packed transition metal surface, Pd(111), and a more open surface, Pd(100), aiming to shed light on surface structure effects on reaction pathways and reactivity, an important issue in catalysis. Reaction pathways on both surfaces at two different coverages have been studied. It is found that the reaction pathways on both surfaces possess crucial common features despite the fact that they have different surface symmetries. Having determined reaction barriers in these systems, we find that the reaction on Pd(111) is strongly coverage dependent. Surface coverages, however, have little effect on the reaction on Pd(100). Calculations also reveal that the low coverage reactions are structure sensitive while the medium coverage reactions are not. Detailed discussions on these results are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号