首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
用固相反应法结合熔融法合成Zn掺杂单相n型Ba8Ga16ZnxSi30-x化合物,探索Zn在Si位的取代对其结构及电传输特性的影响规律.研究结果表明:x=1时化合物的平均键角畸变△θ最大为4.4°;当取代分数x=0,2,4时,对应样品的电导率明显高于x=1,3时对应样品的电导率,在室温附近,Ba8Ga16Zn2Si28化合物表现出较高的电导率,约为3.0×105 S/m,当x=1时,对应化合物的电导率在测试温度范围内最低;当取代分数x=0,2,4时对应样品的Seebeck系数明显高于x=1,3时对应样品的Seebeck系数,且随着填充分数的增加,Seebeck系数分别逐渐降低;Ba8Ga16Zn2Si28化合物在测试温度范围内表现出较好的电性能,在1000K处具有最大的功率因子1.03×10-3 W/(m·K2).  相似文献   

2.
用固相反应法结合熔融法合成Zn掺杂单相n型Ba8Ga16ZnxSi30-x化合物,探索Zn在Si位的取代对其结构及电传输特性的影响规律.研究结果表明:x=1时化合物的平均键角畸变△θ最大为4.4°;当取代分数x=0,2,4时,对应样品的电导率明显高于x=1,3时对应样品的电导率,在室温附近,Ba8Ga16Zn2Si28化合物表现出较高的电导率,约为3.0×105 S/m,当x=1时,对应化合物的电导率在测试温度范围内最低;当取代分数x=0,2,4时对应样品的Seebeck系数明显高于x=1,3时对应样品的Seebeck系数,且随着填充分数的增加,Seebeck系数分别逐渐降低;Ba8Ga16Zn2Si28化合物在测试温度范围内表现出较好的电性能,在1000K处具有最大的功率因子1.03×10-3 W/(m·K2).  相似文献   

3.
We report on temperature-dependent thermal conductivity, resistivity, and Seebeck coefficient of two polycrystalline Br-containing Sn-clathrate compounds with the type I crystal structure. Interstitial Br atoms reside inside the polyhedral cavities formed by the framework, resulting in hole conduction. The framework bonding directly influences the transport properties of these two compositions. The transport properties of these two clathrates are compared with those of other Sn-clathrates. We also discuss our results in terms of the potential for thermoelectric applications.  相似文献   

4.
Type-VIII Ba8Ga16Sn30 polycrystalline clathrates were grown vertically downwards from Ba8Ga16Sn50 solution at furnace temperatures between 500°C and 800°C with an ampoule velocity of 0.36 cm/h. The microstructure, composition, crystal structure, and thermoelectric properties of crystals were investigated. Polycrystalline samples in which Ba8Ga16Sn30 grains were wetted by an Sn-rich phase were prepared. In general, grain size increases along the direction of growth. It was found that the sample grown at 650°C had the largest grains. Smaller grains were observed for samples grown at lower temperatures, as a result of higher rate of nucleation, because of higher undercooling at the solid–liquid interface caused by the lower thermal gradient in the liquid. However, at furnace temperatures higher than 650°C enhanced convection in the solution at higher temperature gradients and wetting phenomena may cause instability of the solid–liquid interface and solid nuclei may flow into the liquid to become new nucleation sites. This explains the decrease of grain size at higher furnace temperatures. The optimum ZT and power factor of the undoped Ba8Ga16Sn30 clathrate prepared by the vertical Bridgman method in this study were, respectively, 0.8 and 11.4 μW/cmK2 at 200°C; the Seebeck coefficient was ?260 μV/K.  相似文献   

5.
The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.  相似文献   

6.
We performed thermoelectric characterizations on TlCu3Te2: (Tl1+)(Cu1+)3 (Te2−)2 and TlCu2Te2: (Tl1+)(Tl3+)(Cu1+)4(Te2−)4, in order to understand the relationship between the thermoelectric properties (especially the lattice thermal conductivity κ lat) and the valence states of Tl. The thermal conductivity of TlCu2Te2 is high (about 8 W m−1 K−1), while that of TlCu3Te2 is extremely low (around 0.5 W m−1 K−1) like other thallium tellurides. This high κ of TlCu2Te2 was caused not only by its large electronic contribution but also by its intrinsically high κ lat. The present study implies that the valence states of Tl would play some important roles in determining the magnitude of κ lat.  相似文献   

7.
We have prepared single crystals of type-VIII clathrate Ba8Ga15.9?x In x Sn30.1 for x ≤ 0.60 by the Sn-flux method. As x is increased from 0 to 0.60, the lattice parameter increases by 0.2%, which is consistent with the larger covalent diameter for In than for Ga. The Seebeck coefficient α, electrical resistivity ρ, and thermal conductivity κ were measured in the temperature range from 300 K to 600 K. For all samples, α is negative, indicating the dominant charge carriers are electrons. With increasing x from 0 to 0.20, ρ and \(\left| \alpha \right|\) decrease by 50% and 30%, respectively. As a result, the lattice thermal conductivity at 300 K decreases from 0.58 W/Km to 0.41 W/Km, which is ascribed to enhancement of rattling of the guest atoms. It is found that the maximum of the dimensionless figure of merit ZT reaches 1.05 at 540 K for x = 0.20.  相似文献   

8.
We report on the experimental investigation of the potential of InGaN alloys as thermoelectric (TE) materials. We have grown undoped and Si-doped In0.3Ga0.7N alloys by metalorganic chemical vapor deposition and measured the Seebeck coefficient and electrical conductivity of the grown films with the aim of maximizing the power factor (P). It was found that P decreases as electron concentration (n) increases. The maximum value for P was found to be 7.3 × 10−4 W/m K2 at 750 K in an undoped sample with corresponding values of Seebeck coefficient and electrical conductivity of 280 μV/K and 93␣(Ω cm)−1, respectively. Further enhancement in P is expected by improving the InGaN material quality and conductivity control by reducing background electron concentration.  相似文献   

9.
The temperature dependence of the transport properties, including electrical and thermal conductivities, of a practical isotropic conductive adhesive (ICA) including an epoxy-based binder was investigated in order to comprehensively evaluate the physical changes induced during exposure to elevated temperatures. The ICA specimens were cured and post-annealed under various conditions in order to clarify the effect of curing state of the adhesive binder on the electrical resistivity. The electrical resistivity at ambient temperature tends to decrease with increasing curing temperature, even if the samples exhibit full conversion. In addition, an annealing effect, resulting in a deviation from a linear relationship in the temperature dependence of resistivity, can be induced during the heating process experienced during resistivity measurements. However, the ICA specimens exhibited similar values for the temperature coefficient of resistivity (TCR), regardless of the curing and post-annealing conditions in the temperature range where the annealing effect is rarely induced, although the thermal history of the specimens significantly influences the absolute values of electrical resistivity. The temperature dependence of the thermal conductivity is almost accounted for by the decrease in the contribution of conducting electrons in the temperature range below the glass-transition temperature, T g.  相似文献   

10.
Growth conditions and properties of AlxGa1-xAs (0.1 ≤ × ≤O.3) using metalorganic vapour phase epitaxy (MO-VPE) are investigated. N-type is achieved either by silicon or by selenium doping. Properties of the layers are evaluated by Hall effect, cathodoluminescence and photoluminescence. It is shown that selenium doping leads to luminescent material : when x = O.1, the efficiency is only a factor of 2 smaller than for GaAs. Deposition temperature is a critical parameter : increasing the growth temperature yields more luminescent Alx Ga1-x As. This work has been partly supported by the Délégation à la Recherche Scientifique et Technique (D.G.R.S.T.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号