首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Coherent anti‐Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample‐to‐sample comparability. The primary limitation stems from the need to accurately measure the so‐called nonresonant background (NRB) that is used to extract the chemically sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel‐by‐pixel basis is a nontrivial task; thus, surrogate NRB from glass or water is typically utilized, resulting in error between the actual and estimated amplitude and phase. In this paper, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re‐developing the theory of phase retrieval via the Kramers–Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method‐based phase retrieval. This new error‐correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
The effects of annealing temperature on the morphologies and optical properties of ZnO nanostructures synthesized by sol–gel method were investigated in detail. The SEM results showed that uniform ZnO nanorods formed at 900 C. The PL results showed an ultraviolet emission peak and a relatively broad visible light emission peak for all ZnO nanostructures sintered at different temperature. The increase of the crystal size and decrease of tensile stress resulted in the UV emission peak shifted from 386 to 389 nm when annealing temperature rose from 850 to 1000 C. The growth mechanism of the ZnO nanorods is discussed.  相似文献   

3.
Er3+:SrMoO4 crystal of high optical quality was grown by the Czochralski method. The room temperature polarized absorption and emission spectra together with the lifetime decay curve were measured. Based on the Judd-Ofelt theory, three intensity parameters, radiative transition rates, radiative lifetimes and fluorescent branching ratios, were obtained. Emission cross-section and gain cross-section around 1.54 μm were also obtained.  相似文献   

4.
Following a general presentation of the organic conductors which belong to the series of radical cation salts derived from the tetrathiafulvalene molecule we analyze the characteristic charge transfer absorption bands observed in these mixed valence compounds. Using a Drude-Lorentz model we show that the energy gap present in these materials is basically of the Hubbard type. Nevertheless we observe also in specific cases additional contributions due to either a periodic lattice distortion or a counter-ion electrostatic perturbation. We conclude finally that the electronic correlations are the dominant interactions in these narrow 1d electronic band systems.  相似文献   

5.
The optical properties of a metallic nanoshell composite are studied theoretically using different effective medium theories with particular focus on the effects of variation in temperature and particle clustering on these properties. One unique result from our modeling is the persistent manifestation of the single-particle resonances of the individual nanoshells which cannot be found in a composite of solid particles. In addition, we observe red-shifts in the composite plasmon modes, as well as damping in the dielectric function spectrum as the temperature increases. Furthermore, a much greater red-shift will occur when these nanoshells coalesce to form fractal clusters in the composite, with the value of this shift increasing with decrease in the fractal dimension or increase in the cluster size. We further calculate the transmission at normal incidence through such composite thin films as a demonstration of how these effects can be observed experimentally.  相似文献   

6.
Bismuth trioxide (Bi2O3) thin films were prepared by dry thermal oxidation of metallic bismuth films deposited by vacuum evaporation. The oxidation process of Bi films consists of a heating from the room temperature to an oxidation temperature (To = 673 K), with a temperature rate of 8 K/min; an annealing for 1 h at oxidation temperature and, finally, a cooling to room temperature. The optical transmission and reflection spectra of the films were studied in spectral domains ranged between 300 nm and 1700 nm, for the transmission coefficient, and between 380 nm and 1050 nm for the reflection coefficient, respectively. The thin-film surface structures of the metal/oxide/metal type were used for the study of the static current-voltage (I-U) characteristics. The temperature of the substrate during bismuth deposition strongly influences both the optical and the electrical properties of the oxidized films. For lower values of intensity of electric field (ξ < 5 × 104V/cm), I-U characteristics are ohmic.  相似文献   

7.
Optical properties of BiSBr and BiSeBr crystals were investigated by the full potential linearized augmented plane wave (FP-LAPW) method with density-functional theory (DFT). The complex dielectric function and optical constants, such as optical absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, were calculated and compared in the energy range of 0–30 eV. Origin of anisotropic behavior of optical spectra was also discussed. The plasmon energy ?ωp was estimated to be 18 eV for BiSeBr and 20 eV for BiSBr crystal.  相似文献   

8.
Both experimental and computer-simulated magneto-optical (MO) and optical spectroscopies of Co/Pt multilayered films (MLF) with a nearly constant Pt sublayer thickness and variable Co sublayer thickness, as well as pure Co and Pt, and Co0.51Pt0.49 alloy films, have been performed in the energy range 1.1–4.7 eV. The simulations were achieved by solving the multireflection task for various models of the MLF. The comparison between experimental and computer-simulated optical properties of the Co/Pt MLF allowed us to evaluate the thickness of the interfacial regions with the alloyed components. The diagonal and off-diagonal components of the optical conductivity tensor were calculated not only for the pure Co and Co0.51Pt0.49 alloy films, and the whole Co/Pt MLF, but also for the spin-polarized Pt layers in the Co/Pt MLF.  相似文献   

9.
10.
Optical properties of a two-dimensional quantum ring with pseudopotential in the presence of an external magnetic field and magnetic flux have been theoretically investigated. Our results show that both of the pseudopotential and magnetic field can affect the third non-linear susceptibility and oscillator strength. In addition, we found that the oscillator strength and the absolute value of the resonant peak of the linear, non-linear and total absorption coefficient demonstrates the Aharonov-Bohm oscillation with magnetic flux, moreover, changes in confinement potential can influence the Aharonov-Bohm oscillation in peak while the resonant peak value of the linear, non-linear and total refractive index changes decreases as magnetic flux increases.  相似文献   

11.
The present work focuses on the assessment of two surface treatment procedures employed under ultra high vacuum conditions in order to obtain atomically clean graphene layers without disrupting the morphology and the two dimensional character of the films. Graphene layers grown by chemical vapor deposition on polycrystalline Cu were stepwise annealed up to 750 °C or treated by mild Ar+ sputtering. The effectiveness of both methods and the changes that they induce on the surface morphology and electronic structure of the films were systematically studied by X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. Ultraviolet photoelectron spectroscopy was employed for the study of the electronic properties of the as received sample and in combination with the work function measurements, indicated the hybridization of the C-π network with Cu d-orbitals. Mild Ar+ sputtering sessions were found to disrupt the sp2 network and cause amorphisation of the graphitic carbon. Annealing between 300 °C and 450 °C under ultra high vacuum proved to be an effective and lenient way for achieving an atomically clean graphene surface. At higher temperatures the rigid structure of graphene does not follow the expansion of the copper substrate leading to the graphene/Cu interface breakdown and possibly to further rippling of the graphene layers leaving bare areas of cooper substrate.  相似文献   

12.
We have calculated the anisotropic frequency dependent dielectric function for the 1T and 2H phases of TaS2 and TaSe2 using the linear muffin tin orbital method within the atomic sphere approximation. We find significant anisotropy in the frequency dependent dielectric function for the 1T and 2H phases at low energies (less than 4 eV). Unfortunately there are no experimental data to compare with. The averaged dielectric function agrees with the available experimental data except that the calculated peak heights are underestimated and shifted to higher energies by 1–2eV.  相似文献   

13.
Porous anodic alumina thin films with iridescent colors were fabricated electrochemically in phosphoric acid electrolyte. Compared to the color saturation of alumina films fabricated in oxalic acid electrolyte, the saturation obtained using phosphoric acid was enhanced dramatically. The mechanisms behind this observation are discussed, and the microstructure and optical characteristics of the films are characterized. Multicolor patterns were obtained by an organics-assisted process for which details are given.  相似文献   

14.
We have successfully synthesized Au/Ag colloidal nano-alloys with a wide range of compositions by laser ablation of single metal targets in water and a re-irradiation of mixed colloidal suspensions. The optical extinction spectra have been obtained in the plasmon resonance region and their analysis by using the Mie-Gans approach has lead to a quantitative estimation of a number of different structural features for the sols. Some of the obtained results are supported by X-ray photoelectron data and transmission electron microscopy, while others are used to investigate the kinetics of formation of the nano-alloys under laser irradiation.  相似文献   

15.
The paper reports the effect of chopping the vapour flow on properties of vacuum evaporated polyaniline thin films synthesized by aqueous polymerization pathway. The chopper was a metallic vane of V-shaped cut out placed between the substrate and boat in the path of evaporated vapour. It interrupted the flow of vapour at a constant rate. Fourier Transform Infra-red (FTIR) studies indicated that the vacuum evaporated films are more in reduced form and contain short chain oligomers. Improved adhesion and reduced intrinsic stress of polyaniline thin film due to chopping are obtained. Higher transmittance and lower refractive index films resulted due to the process of chopping as compared to the deposited films. Chopping also produces smoother surface morphology.  相似文献   

16.
We have investigated the optical, electrical and photovoltaic properties of devices based on 1,2-diazoamino diphenyl ethane (DDE) and poly(3-phenyl hydrazone thiophene) (PPHT):DDE blend. It is observed from the J-V characteristics of the Al/DDE/ITO (ITO—indium tin oxide) device that the electron current injected from Al contact was shown to be space charge limited (SCL), indicating that Al forms nearly ohmic contact for electron injection into lowest unoccupied molecular orbital (LUMO) of DDE. The effect of thermal annealing and composition, on the optical, electrical and photovoltaic response of blend of PPHT and DDE sandwiched between a transparent ITO electrode and an Al back contact are investigated. The observed absorption quenching in the PPHT:DDE blend is attributed to the disordering of PPHT chains and charge transfer between PPHT and DDE as evidenced by FTIR spectra. The observed red shift in the absorption peak on thermal annealing is due to the improvement in the ordering and increases in conjugation length in PPHT. The observed dark current-voltage curves agree well with trap-controlled SCL transport theory. The photophysics of the blend material and influence of thermal annealing on the performance and morphology of these devices were discussed. Annealing process results in the formation of PPHT:DDE complex and increase in the ordering of polymer chain, that increases the incident photon to current efficiency (IPCE) and power conversion efficiency of the photovoltaic devices.  相似文献   

17.
The optical transmission spectra of amorphous (a-) Se1−xInx films, with x = 0.0, 0.05, 0.18 and 0.35, that prepared by thermal evaporation from their corresponding bulk ingots, are recorded over the spectral region of 500–2500 nm. A simple straight forward procedure proposed by Swanepeol has been applied to determine the two components of the complex refractive index (). The dispersion of is examined in terms of the Wemple and DiDomenico model and is discussed in terms of In-content. An estimation of various optical parameters such as, the optical energy gap (Eg = 1.96–1.33 eV), single oscillator energy (Eo = 3.95–3.16 eV), oscillator dispersion energy (Ed = 22.6–31.6 eV), lattice oscillator strength (El = 0.38–0.61 eV) and wavelength at zero material dispersion (λc = 2.0569–2.0879 μm) have been given and discussed in relation to the coordination number, hydrostatic density and formed chemical bonds that are introduced in the network of a-Se with the introduction of up to 35 at.% In.  相似文献   

18.
Transparent polymer materials, due to their unique properties, such as light weight, optical transparency, and electrical and mechanical properties, have become very attractive as a replacement for inorganic glass substrates in a wide range of optoelectronic applications. In this research, aluminum zinc oxide nanostructured thin film was deposited on polycarbonate polymer substrates using a magnetron sputtering technique. The structure, morphology, and surface composition of the thin film were investigated by X-ray diffraction and field emission scanning electron microscopy. The optical and electrical properties of the thin film were investigated by UV–VIS-NIR spectrophotometer, ellipsometer, and four point probe method. The X-ray diffraction pattern showed that the aluminum zinc oxide thin film had a polycrystalline structure. The optical and electrical results indicated that the refractive index, band gap, and sheet resistance of the aluminum zinc oxide thin film were 1.8, 3.2 eV, and 265 Ω/sq, respectively.  相似文献   

19.
Two low lying energy levels of 3D two-electron quantum dot with rigid confinement (the wave functions vanish at the surface of the quantum dot) are obtained by the variational and perturbation methods. There are two kind of quantum dots: para- and ortho-dots with antiparallel and parallel electron spins, respectively. An ensemble of the two-electron quantum dots contains para-dots in the ground state and ortho-dots in the lowest metastable state at low enough temperatures. The optical parameters of GaAs two-electron quantum dot are calculated with the help of obtained energy levels and compared with the optical parameters known for the one electron GaAs quantum dot. The Coulomb interaction between electrons is responsible for the blue shift of maxima of the absorption coefficient and refractive index of two-electron quantum dots.  相似文献   

20.
The optical and electroluminescent properties of 3,4,6-triphenyl-α-pyrone (α-pyrone), a new blue fluoresce dye, are investigated using films prepared by wet and dry process and organic light-emitting diodes (OLEDs) fabricated with an α-pyrone-emitting layer. The optical properties of α-pyrone are found to be affected by its crystallinity. In the fabrication of OLEDs, wet processing (spin coating) is shown to be more suitable for preparation of the α-pyrone layer than dry processing (thermal evaporation). The best device performance is obtained for a device prepared using poly (n-vinylcarbazole) as the dye host, and a bathocuproine/tris-(8-hydroxyquinoline)aluminum bilayer as a hole-blocking and carrier-injection layer. The maximum luminance of this device is 3000 cd/m2 at a current density of 0.2 A/cm2, with a current efficiency of 1.8 cd/A at 0.02 A/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号