首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
端接非线性负载的非均匀传输线瞬态分析   总被引:1,自引:0,他引:1  
在均匀多导体传输线的时域有限差分法(FDTD)基础上,对非均匀多导体传输线及端接非线性负载的情况进行了分析。结果表明:对于非均匀多导体传输线,采用FDTD法进行瞬态分析极为方便,并且可以处理端接非线性负载的情况;同时,还可获得线上各点的电压、电流波过程。通过实例验证了所提出的FDTD算法的有效性,可用于传输线波过程的研究。  相似文献   

2.
在用时域有限差分(FDTD)方法模拟稳态电磁散射时,为了减小稳态建立过程中的冲激效应,缩短建立稳态所需时间,本文引入了开关函数,并给出几种开关函数下FDTD的稳态建立过程。  相似文献   

3.
以分析等长均匀无损耗多导体传输线的时域有限差分(FDTD)法为基础,在考虑传输线损耗的情况下,对不等长非均匀多导体传输线进行分析。首先,在考虑传输线损耗的情况下给出传输线上各点电压和电流的迭代计算公式;其次,利用该公式对不等长非均匀有损耗传输线模型进行数值计算和理论分析;最后,通过仿真实验,其结果表明所提计算方法是正确和有效的。该方法对不等长非均匀有损耗传输线的研究提供理论计算参考。  相似文献   

4.
本文在考虑传输线损耗的情况下,对时域有限差分(FDTD)法应用于不等长有损耗传输线的情况进行了研究。首先,在考虑传输线损耗的情况下给出了传输线上各点电压和电流的迭代计算公式;其次,利用该公式对不等长有损耗传输线模型进行数值计算和理论分析;最后,通过仿真实验,其结果表明了所提计算方法是正确和有效的。该方法对不等长有损耗传输线的研究提供了理论计算参考。  相似文献   

5.
《现代电子技术》2017,(1):163-166
非平行结构的传输线在电力电子系统中普遍存在,当其上通有电压和电流信号时,会在周围传输线上产生串扰响应。采用时域传输线方程建立多根非平行传输线之间的串扰模型,结合FDTD方法,分析在脉冲集总源激励下受扰导线始端和终端负载上的串扰电压响应特性,将其结果与仿真结果对比,验证了该方法的正确性。研究结果表明,非平行结构中受扰线始端和终端负载上的串扰电压响应随着传输线离地面高度的增大而增大,随着传输线之间夹角的增大而变小,且减小的趋势逐渐减弱,从而为线缆间的串扰防护提供了参考依据。  相似文献   

6.
提出一种传输线瞬态响应的时域分析方法。该方法对电报方程在时域内差分离散,在建立对空间的一阶微分方程组后,采用精细积分法,可获得传输线瞬态响应。这是一种时域内的半解析数值计算方法,具有方法简单、计算精度高等优点,能够有效地分析具有非线性负载的有损耦合传输线瞬态响应问题,也可以用于输电线路的瞬态分析及故障测距。  相似文献   

7.
基于Beam Liu Tesche方程(以下简称BLT方程),采用离散化方法来求解双导传输线的频域和时域终端响应.对于离散化的双导线模型,应用Agrawal模型分布源,首先获得了BLT方程在频域上的离散化计算公式.接着采用Fourier逆变换,获得BLT方程在时域上的离散化计算公式.采用这两个离散化计算公式,当知道在导线上的激励源分布的离散数据时,就可以计算线路终端频域或者时域的感应电压和电流.最后针对平面波激励源进行数值仿真试验.  相似文献   

8.
廖成  任朗 《电子科学学刊》1998,20(6):821-827
本文将流体力学领域的微分--Thompson变换与时域有限差分(FDTD)技术结合起来,所形成的Thompson-FDTD方法,首次用来计算和分析任意形状介质体的电磁散射特性,该方法至少具有两个明显的优点,可以把不规则形体变换成规则形体,有利于精确匹配边界条件;可以任意调配网格分布,有利于提高计算精度,其数值实现进一步证实了该方法能精确模拟任意形状介质目标的电磁散射过程。  相似文献   

9.
在传输线网络瞬态响应灵敏度分析之中,提出了一种基于NILT的新的分析方法。该方法将传输线及其效应连同电子元器件及单元电路作为一个整体,根据传输线在电路中的拓扑关系,将传输线网络瞬态响应灵敏度分析问题转化为求解传输线网络瞬态响应问题,以及传输线ABCD矩阵对电路参数的偏导数问题。通过将ABCD矩阵进行级数展开,极大地简化了ABCD矩阵对电路参数偏导数的计算以及传输线网络瞬态响应灵敏度的分析。本文方法不需要对耦合传输线进行解耦,具有简单、精确、高效等特点,算例结果表明了本文方法的有效性。  相似文献   

10.
将辛浦生积分法用于非均匀传输线瞬态响应分析,实例分析表明,这种方法分析非均匀传输线瞬态响应是简单、有效的。  相似文献   

11.
任意负载有损传输线时域响应的精细积分法   总被引:2,自引:0,他引:2  
精细积分法能够有效地对有损传输线时域响应进行分析。通过对精细积分法进行改进 ,使其不仅能够在时域内很容易地处理具有电抗性质的负载 ,还可容易地处理如短路、开路这类传统FFT法难以解决的特殊的传输线时域响应问题 ,极大地提高了精细积分法分析传输线时域响应的功效  相似文献   

12.
针对外场激励下屏蔽腔体内微带线的耦合终端响应,提出一种基于电磁拓扑网络的半解析混合算法——传输线网络BLT(Baum-Liu-Tesche)方程法.首先建立孔缝、腔体及微带线的电磁拓扑模型,然后结合腔体格林函数法,求解磁流激励腔体内的电场分布,最后利用网络BLT方程求解各节点处的电压和电流,即可得到任意位置处的微带线耦合终端响应.通过与实测值、其他方法计算结果对比,验证了所提方法的有效性.计算结果表明:在腔体和孔缝的谐振频率附近,微带线响应出现了峰值;且微带线距孔缝越近,产生的耦合电压值越大;入射脉冲宽度越窄,相同位置处的微带线耦合终端电压越大.  相似文献   

13.
针对多导体传输线瞬态响应的无源性问题,提出了基于集总等效源模型的多导体传输线瞬态响应模型. 从外场激励下的多导体传输线的频域电报方程解出发,将外场在传输线上激励的分布电压源和电流源与传输线指数矩阵解耦,建立了集总等效电压源和电流源模型. 为避免复杂的傅里叶反变换及卷积运算,推导了集总源模型的时域递推方程. 在此基础上,采用时域有限差分法建立了端接线性负载、非线性负载和外场激励下的不等长多导体传输线瞬态响应离散递推方程. 通过对无损传输线的仿真对比,验证了方法的有效性. 最后,对端接线性负载、非线性负载和外场激励下的不等长多导体传输线瞬态响应进行了试验和仿真分析.  相似文献   

14.
双绞传输线电磁兼容特性的FDTD分析   总被引:10,自引:0,他引:10  
将曲线坐标系中的时域有限差分法(FDTD)拓展到空间为任意媒质情形,然后针对双绞传输线的特殊结构综合运用曲线坐标系、圆柱坐标系、旋转坐标系和子域连接法进行空间网格划分、FDTD建模,并通过求解双绞传输线和平行传输线的特性阻抗对该建模的准确度进行了验证,最后在空间线源激励下对双绞线和平行线的电磁兼容特性进行了比较,可以看出双绞线对空间电磁场的耦合能力远远低于平行线。  相似文献   

15.
端接非线性负载的无畸变传输线瞬态分析半解析法   总被引:2,自引:0,他引:2  
对带非线性负载的无畸变传输线瞬态分析问题,利用Volterra积分方程,建立了一种半解析方法。该方法利用Baum-Liu-Tesche(BLT)方程得到频域输入导纳、短路电流,然后利用级数展开和傅里叶变换的性质,得到Volterra积分方程中输入导纳、短路电流的瞬态解析表达,简化了Volterra积分方程,并可以避免奇异积分。  相似文献   

16.
在实际分布参数电路中,损耗和非线性特性往往同时存在。基于作者的教学和科研经历,本文利用有限差分法数值计算了场效应晶体管沟道这一非线性均匀传输线在高频正弦电源激励下的暂态响应过程,并采用傅里叶级数展开法得到了输出电压含有的谐波幅值。这一内容对于扩展线性均匀传输线知识,加强学生理论联系实际以及综合运用电路知识的能力,均具有较好的推动作用。  相似文献   

17.
张琪  胡佳俊  陈后鹏  李喜  王倩  范茜  金荣  宋志棠 《微电子学》2016,46(2):211-214, 223
为满足SoC系统负载快速变化的要求,提出了一种新型摆率增强型片上LDO系统。通过增加有效的内部检测电路,使LDO的功率管栅极电压可以快速地响应输出负载跳变,提高电路响应速度。采用中芯国际40 nm CMOS工艺模型,对电路进行仿真。仿真结果表明,当LDO的负载电流以100 mA/μs跳变时,电路的最大上冲电压为110 mV,下冲电压为230 mV,恢复时间分别为1.45 μs和1.6 μs。同时,在2 V电源电压下,电路的静态电流只有42 μA。  相似文献   

18.
提出一种新型微带光子带隙结构.该结构直接在微带信号线上刻蚀周期性结构,解决了该结构的封装问题,且不增加微带结构的尺寸.采用时域有限差分法分析该结构的S参数,并研究了几何参数与S参数之间的关系,得出了禁带中心频率、带宽随几何参数变化的趋势.  相似文献   

19.
A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first, and is transformed into a set of first-order differential equations of voltage and current with respect to time. By integrating these differential equations with respect to time, and precise computation, the solution of these differential equations can be obtained. This method can solve the transient response of various kinds of transmission lines with arbitrary terminal networks. Particularly, it can analyze the nonuniform lines with initial conditions, for which there is no existing effective method to analyze the time response so far. The results obtained with this method are stable and accurate. Two examples are given to illustrate the application of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号