首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordination chemistry of silver(I) with the nitrogen-bridged ligands (C(6)H(5))(2)PN(R)P(C(6)H(5))(2) [R = H (dppa); R = CH(3) (dppma)] has been investigated by (31)P NMR and electrospray mass spectrometry (ESMS). Species observed by (31)P NMR include Ag(2)(mu-dppa)(2+), Ag(2)(mu-dppa)(2)(2+), Ag(2)(mu-dppa)(3)(2+), Ag(2)(mu-dppma)(2+), Ag(2)(mu-dppma)(2)(2+), and Ag(eta(2)-dppma)(2)(+). Species observed by ESMS at low cone voltages were Ag(2)(dppa)(2)(2+), Ag(2)(dppa)(3)(2+), Ag(2)(dppma)(2)(2+), and Ag(dppma)(2)(+). (C(6)H(5))(2)PN(CH(3))P(C(6)H(5))(2) showed a strong tendency to chelate, while (C(6)H(5))(2)PN(H)P(C(6)H(5))(2) preferred to bridge. Differences in the bridging versus chelating behavior of the ligands are assigned to the Thorpe-Ingold effect, where the methyl group on nitrogen sterically interacts with the phenyl groups on phosphorus. The crystal structure of the three-coordinate dinuclear silver(I) complex (Ag(2)[(C(6)H(5))(2)PN(H)P(C(6)H(5))(2)](3))(BF(4))(2) has been determined. Bond distances include Ag-Ag = 2.812(1) A, Ag(1)-P(av) = 2.492(3) A, and Ag(2)-P(av) = 2.509(3) A. The compound crystallizes in the monoclinic space group Cc at 294 K, with a = 18.102(4)(o), Z = 4, V = 7261(3) A(3), R = 0.0503, and R(W) = 0.0670.  相似文献   

2.
Wei QH  Yin GQ  Zhang LY  Shi LX  Mao ZW  Chen ZN 《Inorganic chemistry》2004,43(11):3484-3491
A series of Ag(I)-Cu(I) heteronuclear alkynyl complexes were prepared by reaction of polymeric (MCCC(6)H(4)R-4)(n)() (M = Cu(I) or Ag(I); R = H, CH(3), OCH(3), NO(2), COCH(3)) with [M'(2)(mu-Ph(2)PXPPh(2))(2)(MeCN)(2)](ClO(4))(2) (M' = Ag(I) or Cu(I); X = NH or CH(2)). Heterohexanuclear complexes [Ag(4)Cu(2)(mu-Ph(2)PNHPPh(2))(4)(CCC(6)H(4)R-4)(4)](ClO(4))(2) (R = H, 1; CH(3), 2) were afforded when X = NH, and heterooctanuclear complexes [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)R-4)(6)(MeCN)](ClO(4))(2) (R = H, 3; CH(3), 4; OCH(3), 5; NO(2), 6) were isolated when X = CH(2). Self-assembly reaction between (MCCC(6)H(4)COCH(3)-4)(n) and [M'(2)(mu-Ph(2)PCH(2)PPh(2))(2)(MeCN)(2)](ClO(4))(2), however, gave heterohexadecanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](2)(ClO(4))(4) (7). The heterohexanuclear complexes 1 and 2 show a bicapped cubic skeleton (Ag(4)Cu(2)C(4)) consisting of four Ag(I) and two Cu(I) atoms and four acetylide C donors. The heterooctanuclear complexes 3-6 exhibit a waterwheel-like structure that can be regarded as two Ag(3)Cu(CCC(6)H(5))(3) components put together by three bridging Ph(2)PCH(2)PPh(2) ligands. The heterohexadecanuclear complex 7 can be viewed as a dimer of heterooctanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](ClO(4))(2) through the silver and acetyl oxygen (Ag-O = 2.534 (4) A) linkage between two waterwheel-like Ag(6)Cu(2) units. All of the complexes show intense luminescence in the solid states and in fluid solutions. The microsecond scale of lifetimes in the solid state at 298 K reveals that the emission is phosphorescent in nature. The emissive state in compounds 1-5 is likely derived from a (3)LMCT (CCC(6)H(4)R-4 --> Ag(4)Cu(2) or Ag(6)Cu(2)) transition, mixed with a metal cluster-centered (d --> s) excited state. The lowest lying excited state in compounds 6 and 7 containing electron-deficient 4-nitrophenylacetylide and 4-acetylphenylacetylide, respectively, however, is likely dominated by an intraligand (3)[pi --> pi] character.  相似文献   

3.
Zhao Y  Zhang P  Li B  Meng X  Zhang T 《Inorganic chemistry》2011,50(18):9097-9105
Three phenylethynes bearing methyl carboxylate (HL1), monocarboxylate (H(2)L2), and dicarboxylate (H(2)L3) groups were utilized as ligands to synthesize a new class of organometallic silver(I)-ethynide complexes as bifunctional building units to assemble silver(I)-organic networks. X-ray crystallographic studies revealed that in [Ag(2)(L1)(2)·AgNO(3)](∞) (1) (L1= 4-C(2)C(6)H(4)CO(2)CH(3)), one ethynide group interacts with three silver ions to form a complex unit. These units aggregate by sharing silver ions with the other three units to afford a silver column, which are further linked through argentophilic interaction to generate a two-demensional (2D) silver(I) network. In [Ag(2)(L2)·3AgNO(3)·H(2)O](∞) (2) (L2 = 4-CO(2)C(6)H(4)C(2)), the ethynide group coordinates to four silver ions to form a building unit (Ag(4)C(2)C(6)H(4)CO(2)), which interacts through silver(I)-carboxylate coordination bonds to generate a wave-like 2D network and is subsequently connected by nitrate anions as bridging ligands to afford a three-demensional (3D) network. In [Ag(3)(L3)·AgNO(3)](∞) (3) (L3 = 3,5-(CO(2))(2)C(6)H(3)C(2)), the building unit (Ag(4)C(2)C(6)H(3)(CO(2))(2)) aggregates to form a dimer [Ag(8)(L3)(2)] through argentophilic interaction. The dimeric units interact through silver(I)-carboxylate coordination bonds to directly generate a 3D network. The obtained results showed that as a building unit, silver(I)-ethynide complexes bearing carboxylate groups exhibit diverse binding modes, and an increase in the number of carboxylate groups in the silver(I)-ethynide complex unit leads to higher level architectures. In the solid state, all of the complexes (1, 2, and 3) are photoluminescent at room temperature.  相似文献   

4.
YP Xie  TC Mak 《Inorganic chemistry》2012,51(16):8640-8642
Variation of the reaction conditions with AgC≡CR (R = Ph, C(6)H(4)OCH(3)-4, (t)Bu), (t)BuPO(3)H(2), and AgX (X = NO(3), BF(4)) as starting materials afforded four new silver(I) ethynide complexes incorporating the tert-butylphosphonate ligand, namely, 3AgC≡CPh·Ag(2)(t)BuPO(3)·Ag(t)BuPO(3)H·2AgNO(3) (1), 2AgC≡CC(6)H(4)OCH(3)-4·Ag(2)(t)BuPO(3)·2AgNO(3) (2), [{Ag(5)(NO(3)@Ag(18))Ag(5)}((t)BuC≡C)(16)((t)BuPO(3))(4)(H(2)O)(3)][{Ag(5)(NO(3)@Ag(18))Ag(5)} ((t)BuC≡C)(16)((t)BuPO(3))(4)(H(2)O)(4)]·3SiF(6)·4.5H(2)O·3.5MeOH (3), and [{Ag(8)(Cl@Ag(14))}((t)BuC≡C)(14)((t)BuPO(3))(2)F(2)(H(2)O)(2)]BF(4)·3.5H(2)O (4). Single-crystal X-ray analysis revealed that complexes 1 and 2 display different layer-type coordination networks, while 3 and 4 contain high-nuclearity silver(I) composite clusters enclosing nitrate and chloride template ions, respectively, that are supported by (t)BuPO(3)(2-) ligands.  相似文献   

5.
In this paper, ten new silver compounds, namely [Ag(bipy)](L1).H2O (1), [Ag(bipy)](L2).2H2O (2), [Ag2(bipy)2(H2O)2](L3).H2O (3), [Ag(L4)(bipy)].H2O (4), [Ag(L5)(bipy)] (5), [Ag(L6)(bipy)].0.5CH3CN (6), [Ag3(L7)2(bipy)2].2(H2O) (7), [Ag2(L8)(bipy)1.5(H2O)].H2O (8), [Ag2(L9)(bipy)2(H2O)2] (9) and [Ag3(L10)(bipy)2][(bipy)(H2O)2].(H2O)3.5 (10) (where bipy = 4,4'-bipyridine, L1 = 6-amino-1-naphthalenesulfonate anion, L2 = 2-naphthalenesulfonate anion, L3 = sulfosalicylate anion, L4 = p-aminobenzenesulfonate anion, L5 = 4-dimethyaminoazobenzenen-4'-sulfonate anion, L6 = 2,5-dichloro-4-amino-benzenesulfonate anion, L7 = 8-hydroxyquinoline-5-sulfonate anion, L8 = 2-nitroso-1-naphthol-4-sulfonate anion, L9 = 2,6-naphthalenedisulfonate anion and L10 = 1,3,5-naphthalenetrisulfonate anion), have been synthesized and characterized by elemental analyses, IR spectroscopy and X-ray crystallography. In compounds 1-6, Ag(I) centers are linked by bipy ligands to form 1D Ag-bipy chain structures, in which the sulfonate anions of compounds 1-3 act as counter ions. The sulfonate anions of compounds 4 and 5 connect Ag-bipy chains to form 1D double chain structures, respectively. The sulfonate anions of compound 6 connect Ag-bipy chains to form a 2D layer structure. Unexpectedly, compound 7 shows a hinged chain structure, and these chains interlace with each other through hydrogen bonds and pi-pi interactions to generate a 3D structure with channels along the c axis. Compounds 8 and 9 show 1D ladder-like structures. In compound 10, the Ag-bipy chains are connected by sulfonate anions to generate a 3D poly-threaded network, in which an isolated Ag-bipy chain is inserted. The results indicate that the anionic sulfonate-containing co-ligands play an important role in the final structures of the Ag(I) complexes. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

6.
Ten polymeric silver(I) double salts containing embedded acetylenediide: [(Ag2C2)2(AgCF3CO2)9(L1)3] (1), [(Ag2C2)2(AgCF3CO2)10(L2)3]H2O (2), [(Ag2C2)(AgCF3CO2)4(L3)(H2O)]0.75 H2O (3), [(Ag2C2)(1.5)(AgCF3CO2)7(L4)2] (4), [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)] (5), [(Ag2C2) (AgC2F5CO2)7(L1)3(H2O)] (6), [(Ag2C2)(AgCF3CO2)7(L1)3(H2O)]2 H2O (7), [(Ag2C2)(AgC2F5CO2)6(L3)2] (8), [(Ag2C2)2(AgC2F5CO2)12(L4)2(H2O)4]H2O (9), and [(Ag2C2)(AgCF3CO2)6(L3)2(H2O)]H2O (10) have been isolated by varying the types of betaines, the perfluorocarboxylate ligands employed, and the reaction conditions. Single-crystal X-ray analysis has shown that 1-4 all have a columnar structure composed of fused silver(I) double cages, with C2(2-) species embedded in its stem and an exterior coat comprising anionic and zwitterionic carboxylates. For 5 and 6, single silver(I) cages are linked into a beaded chain through both types of carboxylate ligands. In 7, two different coordination modes of L1 connect the silver(I) polyhedra into a chain. For 8, the mu(2)-O,O' coordination mode of L3 connects the silver(I) double cages into a chain. Compound 9 exhibits a two-dimensional architecture generated from the cross-linkage of double cages by C2F5CO2-, L4, and [Ag2(C2F5CO2)2] units. Similar to 9, 10 is also a two-dimensional structure, which is formed by connecting the chains of linked double cages through [Ag2(CF3CO2)2] bridging.  相似文献   

7.
Silver(I) and copper(I) halide derivatives of several tetrakis(diphenylphosphinito)resorcinarene ligands are reported. The complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)(M(5)X(5))], with resorcinarene = (PhCH(2)CH(2)CHC(6)H(2))(4), R = C(6)H(11), 4-C(6)H(4)Me, C(4)H(3)S, OCH(2)CCH, or OCH(2)Ph, M = Ag, X = Cl, Br, or I, M = Cu, and X = Cl or I, contain a crownlike [P(4)M(5)X(5)] metal halide cluster. These crown clusters were found to be dynamic in solution, as studied by variable-temperature NMR, and easily fragment to give the corresponding complexes containing [P(4)M(4)X(5)](-) and [P(4)M(2)(micro-X)](+) units. Reaction of pentasilver crown clusters with triflic acid gave the corresponding disilver complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)]Ag(2)(micro-Cl)]]CF(3)SO(3). Thus, these resorcinarene-based ligands act as a platform for the easy and reversible assembly of copper(I) and silver(I) clusters with novel structures.  相似文献   

8.
The bis(imino)pyridine scaffold provides support for the synthesis and characterization of unique Ag(I) pincer complexes [{ArN=CPh}(2)(NPh)]Ag(+)(OTf)(-) (Ar = 2,5-(t)Bu(2)C(6)H(3)3; 2,6-(i)Pr(2)C(6)H(3) 4). The bonding interactions between the cation-anion and between the bis(imino)pyridine ligand and the Ag centre are presented. Coordination of pyridine, toluene, 2-butyne and cyclooctene to the Ag centre led to the isolation and crystallographic characterization of labile transient adduct species. Bonding analysis of the adducts revealed conventional ligand-Ag coordination and important unconventional electron donation from the ligand to a π*-orbital of the bis(imino)pyridine group.  相似文献   

9.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

10.
Structural study of silver(I) sulfonate complexes with pyrazine derivatives   总被引:1,自引:0,他引:1  
Liu HY  Wu H  Ma JF  Song SY  Yang J  Liu YY  Su ZM 《Inorganic chemistry》2007,46(18):7299-7311
In this Article, 11 silver complexes, namely, [Ag(L1)(2-Pyr)(H2O)] (1), Ag(L1)(2,3-Pyr) (2), [Ag2(L1)2(2Et,3Me-Pyr)2(H2O)] (3), [Ag(2,6-Pyr)](L1).1.5H2O (4), Ag(L1)(2,5-Pyr) (5), [Ag(H2O)2](L2).H2O (6), [Ag(L2)(2-Pyr)] (7), [Ag(L2)(2,3-Pyr)].1.5H2O (8), [Ag(L2)(2Et,3Me-Pyr)].2H2O (9), [Ag2(L2)(2,6-Pyr)(H2O)2](L2).H2O (10) and [Ag(L2)(2,5-Pyr)].H2O (11) (2-Pyr=2-methylpyrazine; 2,3-Pyr=2,3-dimethylpyrazine; 2Et,3Me-Pyr=2-ethyl-3-methylpyrazine; 2,6-Pyr=2,6-dimethylpyrazine; 2,5-Pyr=2,5-dimethylpyrazine; L1=p-aminobenzenesulfonate anion and L2=6-amino-1-naphthalenesulfonate anion), have been synthesized and characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. In 1, 3, and 4, Ag(I) centers are linked by bridging pyrazine ligands to form one-dimensional chains, whereas compound 2 shows a double-chain structure through weak Ag-C interactions. The structure analyses show that both 5 and 11 form two-dimensional networks composed of 26-membered metallocycles. Unexpectedly, compounds 6 and 10 show discrete structures. In compound 7, silver(I) centers are bridged by sulfonate anions to form a polymeric helical structure, and the 2-Pyr molecule acts as a monodentate ligand. Compounds 8 and 9 show hinged chain structures containing 14-membered rings, and these chains interlace with each other to generate unique three-dimensional structures. These results indicate that the substituting groups and the substituting sites of pyrazine derivatives play an important role in the framework formation of silver complexes. Additionally, the luminescent properties of these compounds are also discussed.  相似文献   

11.
The complex [(Ph(3)P)(2)Ag(H(2)cit)]·EtOH (1; H(2)cit(-) = dihydrogencitrate = C(6)H(7)O(7)(-)) contains [(Ph(3)P)(2)Ag(H(2)cit)] molecules in which the silver atom is coordinated to two PPh(3) molecules and the two oxygen atoms of one of the 'terminal'/1-carboxylate groups of the dihydrogencitrate group. The molecules form centrosymmetric hydrogen-bonded dimers in the solid. In [{(Ph(3)P)(2)Ag}(2)(Hcit)], (2), unsymmetrical deprotonation of the citrate grouping is found, from the 1- and 3- (i.e. terminal and central) carboxylates: [(Ph(3)P)(2)Ag(O(2)CCH(2)C(OH) (CH(2)COOH)CO(2))Ag(PPh(3))(2)]. The above complexes, as well as [(Ph(3)P)(3)Ag(H(2)cit)] (3) were prepared via conventional solution methods, involving the reaction of trisilver(I) citrate, citric acid and triphenylphosphine, and by a mechanochemical method involving the reaction of silver(I) oxide, citric acid and triphenylphosphine. IR studies of 1-3 show the presence of coordinated carboxylate and free carboxylic acid groups in the mono- and di-hydrogencitrate ligands, and the formation of 2 from 1 shows that dihydrogencitrate deprotonation can occur upon dissolution of 1 in protic solvents. High-field (9.40 T) (31)P CPMAS NMR spectra were recorded and analysed, yielding heteronuclear (1)J((107/109)Ag,(31)P) and homonuclear (2)J((31)P,(31)P) spin-spin coupling constants.  相似文献   

12.
New silver(I) complexes have been synthesized from the reaction of AgNO(3), monodentate tertiary phosphanes PR(3) (PR(3) = P(C(6)H(5))(3), P(o-C(6)H(4)CH(3))(3), P(m-C(6)H(4)CH(3))(3), P(p-C(6)H(4)CH(3))(3), PCH(3)(C(6)H(5))(2)) and two novel electron withdrawing ligands: potassium dihydrobis(3-nitropyrazol-1-yl)borate and potassium dihydrobis(3-trifluoromethylpyrazol-1-yl)borate. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear ((1)H, (19)F and (31)P) NMR spectroscopy. Solid state structures of the potassium salts K[H(2)B(3-(NO(2))pz)(2)] and K[H(2)B(3-(CF(3))pz)(2)] have been reported. They form polymeric networks due to intermolecular contacts of various types between the potassium ion and atoms of the neighboring molecules. The silver adducts [H(2)B(3-(NO(2))pz)(2)]Ag[P(C(6)H(5))(3)](2) and [H(2)B(3-(NO(2))pz)(2)]Ag[P(p-C(6)H(4)CH(3))(3)] have pseudo tetrahedral and trigonal planar silver sites, respectively. The bis(pyrazolyl)borate ligand acts as a kappa(2)-N(2) donor. The nitro-substituents are coplanar with the pyrazolyl rings in all these adducts indicating efficient electron delocalization between the two units. The [H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)] complex has been obtained from re-crystallization of {[H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)](2)} in a dichloromethane-diethyl ether solution; it is a three-coordinate, trigonal planar silver complex.  相似文献   

13.
Zhao XL  Wang QM  Mak TC 《Inorganic chemistry》2003,42(24):7872-7876
Four new silver(I) double salts (L(2)H)(4)[Ag(10)(C(2))(CF(3)CO(2))(12)(L)(2)].5H(2)O (1), [Ag(8)(C(2))(CF(3)CO(2))(6)(L)(6)] (2), [(Ag(2)C(2))(AgC(2)F(5)CO(2))(6)(L)(3)(H(2)O)].H(2)O (3), and (L.H(3)O)(2)[Ag(11)(C(2))(2)(C(2)F(5)CO(2))(9)(H(2)O)(2)].H(2)O (4) incorporating the hitherto unexplored ligand 4-hydroxyquinoline (L) have been synthesized by the hydrothermal method. Compound 1 features an unprecedented bicapped square-antiprismatic Ag(10) silver cage with an embedded C(2)(2-) moiety, whereas the discrete supermolecule 2 bears a rhombohedral Ag(8) core similar to that previously found in Ag(2)C(2).6AgNO(3). Compound 3 contains a discrete supramolecular complex whose core is a (C(2))(2)@Ag(16) double cage constructed from the edge-sharing of two monocapped square antiprisms, which is completely surrounded by 12 pentafluoropropionate, 6 4-hydroxyquinoline, and 2 aqua ligands. The layer structure in 4 is constructed from a sinuous anionic silver column composed of fused irregular monocapped trigonal antiprisms each encapsulating a C(2)(2-) dianion, with L.H(3)O(+) species serving as hydrogen-bond connectors to adjacent columns.  相似文献   

14.
The crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag(+)-exchanged zeolite X (FAU), a = 24.865(2) A, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 21 degrees C. It is very different from the ethylene complex of Ag(92)-X that had been dehydrated at 400 degrees C in flowing oxygen, as were the two dehydrated structures. The crystal was prepared by ion exchange in a flowing stream of aqueous 0.05 M AgNO(3) for 3 days, followed by dehydration at 400 degrees C and 2 x 10(-6) Torr for 2 days, followed by exposure to 300 Torr of zeolitically dry ethylene gas for 2 h at 21 degrees C. The structure was determined in this atmosphere and was refined using all data to the final error indices (based upon the 534 reflections for which F(o) > 4sigma(F(o))) R(1) = 0.062 and wR(2) = 0.135. In this structure, per unit cell, 14 Ag(+) ions were found at the octahedral site I (Ag-O = 2.611(9) A), and 32 partially reduced Ag(+) ions fill two different site I' positions deep in the sodalite cavities (Ag-O = 2.601(13) and 2.618(12) A). The sodalite cavities host two different cationic silver clusters. In about 47% of sodalite units, eight silver atoms form interpenetrating tetrahedra, Ag(8)(n+) (n = 4 is suggested), with T(d)() symmetry. The other 53% of the sodalite units host cyclo-Ag(4)(m+) (m = 2 is suggested) cations with near S(4) symmetry. These clusters are very similar to those in vacuum-dehydrated Ag(92)-X. Thirty-two Ag(+) ions fill the single 6-rings, 15 at site II' (Ag-O = 2.492(10) A), and 17 at site II (Ag-O = 2.460(9) A). The latter 17 lie in supercages where each forms a lateral pi-complex with an ethylene molecule. In turn, each C(2)H(4) molecule forms two cis electrostatic hydrogen bonds to framework oxygens. The remaining 14 Ag+ ions occupy three different II' sites. Vacuum dehydration had caused substantial decomposition: per unit cell, 30 of the 92 Ag(+) ions were reduced and 15 of the 384 framework oxide ions were oxidized to O2(g), leaving lattice vacancies. The sorption of C(2)H(4) at 21 degrees C reoxidized about 7 of the 30 Ag(0) atoms to Ag(+) and reduced 1.75 ethylene molecules to give CH(2)(2-) groups which refilled 3.5 of these 15 lattice vacancies. The remaining vacancies may have been filled with H(2)C=C(2-) ions. The unit cell formula, which originally contained 384 oxygen atoms, may be |Ag(92)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5] or |Ag(92)H(23)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5(C2H2)11.5].  相似文献   

15.
Coordination of P,N indolyl-phosphine ligands to Au(I), Ag(I) and Cu(I) metal ions under weakly basic conditions results in easy deprotonation of the indolyl N-H function and effective formation of a family of homo- and heterobimetallic complexes MM'(PPh(2)C(9)H(7)N)(2) (M = M' = Au (2), Ag (5); M = Au, M' = Cu (3), Ag (4)). The latter (4) exists as an inseparable mixture of four different complexes, which are in equilibrium driven by slow dynamics. The reaction of silver(I) and copper(I) ions with PPh(2)(C(9)H(8)N) affords a rare tetranuclear Z-shaped cluster Ag(2)Cu(2)(PPh(2)C(9)H(7)N)(4) (6), which exhibits red luminescence in solid state (650 nm) and a weak dual emission in solution with the main component in the near-IR region (746 nm).  相似文献   

16.
The reaction of Ru2(S2C3H6)(CO)6 (1) with 2 equiv of Et4NCN yielded (Et4N)2[Ru2(S2C3H6)(CN)2(CO)4], (Et4N)2[3], which was shown crystallographically to consist of a face-sharing bioctahedron with the cyanide ligands in the axial positions, trans to the Ru-Ru bond. Competition experiments showed that 1 underwent cyanation >100x more rapidly than the analogous Fe2(S2C3H6)(CO)6. Furthermore, Ru2(S2C3H6)(CO)6 underwent dicyanation faster than [Ru2(S2C3H6)(CN)(CO)5]-, implicating a highly electrophilic intermediate [Ru2(S2C3H6)(mu-CO)(CN)(CO)5]-. Ru2(S2C3H6)(CO)6 (1) is noticeably more basic than the diiron compound, as demonstrated by the generation of [Ru2(S2C3H6)(mu-H)(CO)6]+, [1H]+. In contrast to 1, the complex [1H]+ is unstable in MeCN solution and converts to [Ru2(S2C3H6)(mu-H)(CO)5(MeCN)]+. (Et4N)2[3] was shown to protonate with HOAc (pKa = 22.3, MeCN) and, slowly, with MeOH and H2O. Dicyanide [3]2- is stable toward excess acid, unlike the diiron complex; it slowly forms the coordination polymer [Ru2(S2C3H6)(mu-H)(CN)(CNH)(CO)4]n, which can be deprotonated with Et3N to regenerate [H3]-. Electrochemical experiments demonstrate that [3H]- catalyzes proton reduction at -1.8 V vs Ag/AgCl. In contrast to [3]2-, the CO ligands in [3H]- undergo displacement. For example, PMe3 and [3H]- react to produce [Ru2(S2C3H6)(mu-H)(CN)2(CO)3(PMe3)]-. Oxidation of (Et4N)2[3] with 1 equiv of Cp2Fe+ gave a mixture of [Ru2(S2C3H6)(mu-CO)(CN)3(CO)3]- and [Ru2(S2C3H6)(CN)(CO)5]-, via a proposed [Ru2]2(mu-CN) intermediate. Overall, the ruthenium analogues of the diiron dithiolates exhibit reactivity highly reminiscent of the diiron species, but the products are more robust and the catalytic properties appear to be less promising.  相似文献   

17.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

18.
Fang XQ  Deng ZP  Huo LH  Wan W  Zhu ZB  Zhao H  Gao S 《Inorganic chemistry》2011,50(24):12562-12574
Self-assembly of silver(I) salts and three ortho-hydroxyl and carboxyl groups decorated arenesulfonic acids affords the formation of nine silver(I)-sulfonates, (NH(4))·[Ag(HL1)(NH(3))(H(2)O)] (1), {(NH(4))·[Ag(3)(HL1)(2)(NH(3))(H(2)O)]}(n) (2), [Ag(2)(HL1)(H(2)O)(2)](n) (3), [Ag(2)(HL2)(NH(3))(2)]·H(2)O (4), [Ag(H(2)L2)(H(2)O)](n) (5), [Ag(2)(HL2)](n) (6), [Ag(3)(L3)(NH(3))(3)](n) (7), [Ag(2)(HL3)](n) (8), and [Ag(6)(L3)(2)(H(2)O)(3)](n) (9) (H(3)L1 = 2-hydroxyl-3-carboxyl-5-bromobenzenesulfonic acid, H(3)L2 = 2-hydroxyl-4-carboxylbenzenesulfonic acid, H(3)L3 = 2-hydroxyl-5-carboxylbenzenesulfonic acid), which are characterized by elemental analysis, IR, TGA, PL, and single-crystal X-ray diffraction. Complex 1 is 3-D supramolecular network extended by [Ag(HL1)(NH(3))(H(2)O)](-) anions and NH(4)(+) cations. Complex 2 exhibits 3-D host-guest framework which encapsulates ammonium cations as guests. Complex 3 presents 2-D layer structure constructed from 1-D tape of sulfonate-bridged Ag1 dimers linked by [(Ag2)(2)(COO)(2)] binuclear units. Complex 4 exhibits 3-D hydrogen-bonding host-guest network which encapsulates water molecules as guests. Complex 5 shows 3-D hybrid framework constructed from organic linker bridged 1-D Ag-O-S chains while complex 6 is 3-D pillared layered framework with the inorganic substructure constructing from the Ag2 polyhedral chains interlinked by Ag1 dimers and sulfonate tetrahedra. The hybrid 3-D framework of complex 7 is formed by L3(-) trianions bridging short trisilver(I) sticks and silver(I) chains. Complex 8 also presents 3-D pillared layered framework, and the inorganic layer substructure is formed by the sulfonate tetrahedrons bridging [(Ag1O(4))(2)(Ag2O(5))(2)](∞) motifs. Complex 9 represents the first silver-based metal-polyhedral framework containing four kinds of coordination spheres with low coordination numbers. The structural diversities and evolutions can be attributed to the synthetic methods, different ligands and coordination modes of the three functional groups, that is, sulfonate, hydroxyl and carboxyl groups. The luminescent properties of the nine complexes have also been investigated at room temperature, especially, complex 1 presents excellent blue luminescence and can sensitize Tb(III) ion to exhibit characteristic green emission.  相似文献   

19.
Dong YB  Geng Y  Ma JP  Huang RQ 《Inorganic chemistry》2005,44(6):1693-1703
One new conjugated symmetric fulvene ligand L1 and two new unsymmetric fulvene ligands L2 and L3 were synthesized. Five new supramolecular complexes, namely Ag2(L1)3(SO3CF3)3 (1) (1, monoclinic, P2(1)/c; a = 12.702(3) A, b = 26.118(7) A, c = 13.998(4) A, beta = 96.063(4) degrees, Z = 4), [Ag(L1)]ClO4 (2) (monoclinic, C2/c; a = 17.363(2) A, b = 13.2794(18) A, c = 13.4884(18) A, beta = 100.292(2) degrees, Z = 8), [Ag(L1)(C6H6)SbF6] x 0.5C6H6 x H2O (3) (monoclinic, P2(1)/c; a = 6.8839(11) A, b = 20.242(3) A, c = 18.934(3) A, beta = 91.994(3) degrees, Z = 4), Ag(L2)(SO3CF3) (4) (triclinic, P1; a = 8.629(3) A, b = 10.915(3) A, c = 11.178(3) A, alpha = 100.978(4) degrees, beta = 91.994(3) degrees, gamma = 105.652(4) degrees, Z = 2), and Ag(L3)(H2O)(SO3CF3) (5) (triclinic, P1; a = 8.914(5) A, b = 10.809(6) A, c = 11.283(6) A, alpha = 69.255(8) degrees, beta = 87.163(9) degrees, gamma = 84.993(8) degrees, Z = 2) were obtained through self-assembly based on these three new fulvene ligands in a benzene/toluene mixed-solvent system. Compounds 1-5 have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The results indicate that the coordination chemistry of new fulvene ligands is versatile. They can adopt either cis- or trans-conformation to bind soft acid Ag(I) ion through not only the terminal -CN and furan functional groups but also the fulvene carbon atoms into organometallic coordination polymers or discrete complexes. In addition, the luminescent properties of L1-L3 and their Ag(I) complexes were investigated preliminarily in EtOH and solid state.  相似文献   

20.
Reactions of silver cluster cations Ag(n)+ with ethylene have been studied using a reflectron time-of-flight mass spectrometer. Chemisorbed Ag(n)(C2H4)(m)+ (n = 1-3, m = 1-6) complexes were observed. For a given value of n, the abundances of Ag(n)(C2H4)(m)+ (n = 1-3, m = 1-6) species first increase and then decrease, with the maximum of the intensity distribution usually at m = 4. This maximum does not change with the ethylene concentration in the mixed gas, the stagnation pressure of the mixed gas, or the size of Ag(n) + (n = 1-3). A complementary extensive theoretical study on the structure and binding of Ag(n)(C2H4)(m)+ (n = 1-4, m = 1-4) is also reported. Preferred binding sites, binding energies, geometries, vibrational frequencies, and ionization potentials are determined using density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号