共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum Monte Carlo and quantum chemistry techniques are used to investigate pseudopotential models of the lithium hydride (LiH) molecule. Interatomic potentials are calculated and tested by comparing with the experimental spectroscopic constants and well depth. Two recently developed pseudopotentials are tested, and the effects of introducing a Li core polarization potential are investigated. The calculations are sufficiently accurate to isolate the errors from the pseudopotentials and core polarization potential. Core-valence correlation and core relaxation are found to be important in determining the interatomic potential. 相似文献
2.
《Chemical physics letters》1985,113(3):257-263
Quantum Monte Carlo (QMC) methods, as recently developed for molecular systems, are applied to Be and LiH. The importance of the trial wavefunction, written as a product of a correlation factor and an orbital part, is emphasised. It is shown that significant improvements in the accuracy of the approach are achieved if multi-configuration wavefunctions are used in preference to self-consistent field wavefunctions. Various forms of the correlation factor are investigated. 相似文献
3.
Defect fluctuations in highly distorted polymer chains were simulated by Monte Carlo calculation. The NMR autocorrelation function was derived and described by the superposition of three exponential functions with time constants spread over two orders of magnitude. As a consequence of defect diffusion, longitudinal chain diffusion (reptation) can be expected in polymer melts. By simulating the mean-square displacement of a segment, it was found that after sufficiently long times, compared with defect density correlation times, a linear relationship holds fairly well. As a rule of thumb, it can be stated that the linear Einstein equation is valid for times much greater than 103 mean step times in practical cases (chain length: several thousand segments, defect concentration: 10–20%), or, in other words, for mean-square displacements greater than a few diffusion step lengths. A long-time chain-diffusion coefficient depending on the molecular weight and on the defect concentration could be derived. Effects on the low-field NMR relaxation behavior are derived and discussed. 相似文献
4.
Using variational Monte Carlo and a simple explicitly correlated wave function, we have computed 18 molecular properties of the hydrogen molecule (X1∑) at 24 internuclear distances. These properties have been combined with rapidly convergent rovibrational wave functions to produce rovibrationally averaged properties for several of the lowest rotational and vibrational levels of this system. Our results are in very good agreement with previous values found in the literature. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 相似文献
5.
We investigate the portability of standard norm-conserving pseudopotentials outside the density functional theory-local density approximation (DFT-LDA) framework, i.e., their use and interpretation as electron-ion effective potentials in valence-only diffusion Monte Carlo simulations. While first-principles many-body pseudopotentials are not available in the literature yet, the use of approximate pseudopotentials in quantum Monte Carlo simulations is becoming widespread. Here we attempt a systematic analysis of the portability of norm-conserving pseudopotentials generated within DFT-LDA, focusing on a model many-body system, the two-electron valence-only ion. Our results indicate that the portability is good in most cases, hence the use of pseudopotentials in quantum Monte Carlo simulations is in general a reasonable approximation but suggest that in some cases this approximation may be relevant. © 1997 John Wiley & Sons, Inc. 相似文献
6.
We perform release-node quantum Monte Carlo simulations on the first row diatomic molecules in order to assess how accurately their ground-state energies can be obtained. An analysis of the fermion-boson energy difference is shown to be strongly dependent on the nuclear charge, Z, which in turn determines the growth of variance of the release-node energy. It is possible to use maximum entropy analysis to extrapolate to ground-state energies only for the low Z elements. For the higher Z dimers beyond boron, the error growth is too large to allow accurate data for long enough imaginary times. Within the limit of our statistics we were able to estimate, in atomic units, the ground-state energy of Li(2) (-14.9947(1)), Be(2) (-29.3367(7)), and B(2)(-49.410(2)). 相似文献
7.
Calculations on Rydberg states are performed using quantum Monte Carlo methods. Excitation energies and singlet-triplet splittings are calculated for two model systems, the carbon atom (3P and 1P) and carbon monoxide ((1Sigma and 3Sigma). Kohn-Sham wave functions constructed from open-shell localized Hartree-Fock orbitals are used as trial and guide functions. The fixed-node diffusion quantum Monte Carlo (FN-DMC) method depends strongly on the wave function's nodal hypersurface. Nodal artefacts are investigated for the ground state of the carbon atom. Their effect on the FN-DMC results can be analyzed quantitatively. FN-DMC leads to accurate excitation energies but to less accurate singlet-triplet splittings. Variational Monte Carlo calculations are able to reproduce the experimental results for both the excitation energies and the singlet-triplet splittings. 相似文献
8.
9.
We study three wave function optimization methods based on energy minimization in a variational Monte Carlo framework: the Newton, linear, and perturbative methods. In the Newton method, the parameter variations are calculated from the energy gradient and Hessian, using a reduced variance statistical estimator for the latter. In the linear method, the parameter variations are found by diagonalizing a nonsymmetric estimator of the Hamiltonian matrix in the space spanned by the wave function and its derivatives with respect to the parameters, making use of a strong zero-variance principle. In the less computationally expensive perturbative method, the parameter variations are calculated by approximately solving the generalized eigenvalue equation of the linear method by a nonorthogonal perturbation theory. These general methods are illustrated here by the optimization of wave functions consisting of a Jastrow factor multiplied by an expansion in configuration state functions (CSFs) for the C2 molecule, including both valence and core electrons in the calculation. The Newton and linear methods are very efficient for the optimization of the Jastrow, CSF, and orbital parameters. The perturbative method is a good alternative for the optimization of just the CSF and orbital parameters. Although the optimization is performed at the variational Monte Carlo level, we observe for the C2 molecule studied here, and for other systems we have studied, that as more parameters in the trial wave functions are optimized, the diffusion Monte Carlo total energy improves monotonically, implying that the nodal hypersurface also improves monotonically. 相似文献
10.
Calculations with the diffusion quantum Monte Carlo method are presented for vanadium oxide molecules VO0/+0(n) with n = 1-4 and for V2O5. Atomization and ionization energies are calculated as well as oxygen abstraction energies. The fixed-node approximation is compared for guide functions with orbitals from B3LYP and BP86 calculations and higher accuracy was obtained with the latter orbitals. Additionally, all-electron and pseudopotential calculations are compared for the oxygen atom. The overall accuracy is found to be comparable to CCSD(T) calculations where experimental data is available. 相似文献
11.
A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space. 相似文献
12.
Christov IP 《The Journal of chemical physics》2008,128(24):244106
In this paper, we solve quantum many-body problem by propagating ensembles of trajectories and guiding waves in physical space. We introduce the "effective potential" correction within the recently proposed time-dependent quantum Monte Carlo methodology to incorporate the nonlocal quantum correlation effects between the electrons. The associated correlation length is calculated by adaptive kernel density estimation over the walker distribution. The general formalism is developed and tested on one-dimensional helium atom in laser field of different intensities and carrier frequencies. Good agreement with exact results for the atomic ionization is obtained. 相似文献
13.
The authors present scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. They demonstrate their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, they compute the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post-Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. They also show their pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for first and second rows, and n=D,T for third to fifth rows) optimized for our pseudopotentials are also presented. 相似文献
14.
Bond stretching mimics different levels of electron correlation and provides a challenging test bed for approximate many-body computational methods. Using the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC) method, we examine bond stretching in the well-studied molecules BH and N(2) and in the H(50) chain. To control the sign/phase problem, the phaseless AF QMC method constrains the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. With single Slater determinants from unrestricted Hartree-Fock as trial wave function, the phaseless AF QMC method generally gives better overall accuracy and a more uniform behavior than the coupled cluster CCSD(T) method in mapping the potential-energy curve. In both BH and N(2), we also study the use of multiple-determinant trial wave functions from multiconfiguration self-consistent-field calculations. The increase in computational cost versus the gain in statistical and systematic accuracy are examined. With such trial wave functions, excellent results are obtained across the entire region between equilibrium and the dissociation limit. 相似文献
15.
We describe an efficient algorithm to compute forces in quantum Monte Carlo using adjoint algorithmic differentiation. This allows us to apply the space warp coordinate transformation in differential form, and compute all the 3M force components of a system with M atoms with a computational effort comparable with the one to obtain the total energy. Few examples illustrating the method for an electronic system containing several water molecules are presented. With the present technique, the calculation of finite-temperature thermodynamic properties of materials with quantum Monte Carlo will be feasible in the near future. 相似文献
16.
Christov IP 《The Journal of chemical physics》2007,127(13):134110
We examine the relation between the recently proposed time-dependent quantum Monte Carlo (TDQMC) method and the principles of stochastic quantization. In both TDQMC and stochastic quantization, particle motion obeys stochastic guidance equations to preserve quantum equilibrium. In this way the probability density of the Monte Carlo particles corresponds to the modulus square of the many-body wave function at all times. However, in TDQMC, the motion of particles and guide waves occurs in physical space unlike in stochastic quantization where it occurs in configuration space. Hence, the practical calculation of time evolution of many-body fully correlated quantum systems becomes feasible within the TDQMC methodology. We illustrate the TDQMC technique by calculating the symmetric and antisymmetric ground state of a model one-dimensional helium atom, and the time evolution of the dipole moment when the atom is irradiated by a strong ultrashort laser pulse. 相似文献
17.
18.
The transition metal (TM) oxygen bond appears very prominently throughout chemistry and solid-state physics. Many materials, from biomolecules to ferroelectrics to the components of supernova remnants, contain this bond in some form. Many of these materials' properties depend strongly on fine details of the TM-O bond, which makes accurate calculations of their properties very challenging. Here the authors report on highly accurate first principles calculations of the properties of TM monoxide molecules within fixed-node diffusion Monte Carlo and reptation Monte Carlo. 相似文献
19.
20.
Using explicitly correlated wavefunctions and variational Monte Carlo we calculate the electron density, the electron density difference, the intracule density, the extracule density, two forms of the kinetic energy density, the Laplacian of the electron density, the Laplacian of the intracule density, and the Laplacian of the extracule density on a dense grid of points for the ground state of the hydrogen molecule at three internuclear distances (0.6, 1.4, 8.0). With these values we construct a contour plot of each function and describe how it can be used to visualize the distribution of electrons in this molecule. We also examine the influence of electron correlation on each expectation value by calculating each function with a Hartree–Fock wavefunction and then comparing these values with our explicitly correlated values. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 相似文献