首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low-temperature oxidation of Fe(2)(S(2)C(n)H(2n)(CNMe)(6-x)(CO)x (n = 2, 3; x = 2, 3) affords a family of mixed carbonyl-isocyanides of the type [Fe(2)(S(2)C(n)H(2n)(CO)x(CNMe)(7-x)](2+). The degree of substitution is controlled by the RNC/Fe ratio, as well as the degree of initial substitution at iron, with tricarbonyl derivatives favoring more highly carbonylated products. The structures of the monocarbonyl derivatives [Fe(2)(S(2)C(n)H(2n))(mu-CO)(CNMe)(6)](PF(6))(2) (n = 2,3) established crystallographically and spectroscopically, are quite similar, with Fe---Fe distances of ca. 2.5 A, although the mu-CO is unsymmetrical in the propanedithiolate derivative. Isomeric forms of [Fe(2)(S(2)C(3)H(6))(CO)(CNMe)(6)](PF(6))(2) were characterized where the CO is bridging or terminal, the greatest structural difference being the 0.1 A elongation of the Fe---Fe distance when MeNC (vs CO) is bridging. In the dicarbonyl species, [Fe(2)(S(2)C(2)H(4))(mu-CO)(CO)(CNMe)(5)](PF(6))(2), the terminal CO ligand is situated at one of the basal sites, not trans to the Fe---Fe vector. Oxidation of Fe(2)(S(2)C(2)H(4))(CNMe)(3)(CO)(3) under 1 atm CO gives the deep pink tricarbonyl [Fe(2)(S(2)C(2)H(4))(CO)(3)(CNMe)(4)](PF(6))(2). DFT calculations show that a bridging CO or MeNC establishes a 3-center, 2-electron bond within the two Fe(II) centers, which would otherwise be nonbonding.  相似文献   

2.
Y Chang  QS Li  Y Xie  RB King 《Inorganic chemistry》2012,51(16):8904-8915
Recent experimental work (2010) on (Cy(3)P)(2)Pt(BO)Br indicates that the oxygen atom of the boronyl (BO) ligand is more basic than that in the ubiquitous CO ligand. This suggests that bridging BO ligands in unsaturated binuclear metal carbonyl derivatives should readily function as three-electron donor bridging ligands involving both the oxygen and the boron atoms. In this connection, density functional theory shows that three of the four lowest energy singlet Fe(2)(BO)(2)(CO)(7) structures have such a bridging η(2)-μ-BO group as well as a formal Fe-Fe single bond. In addition, all four of the lowest energy singlet Fe(2)(BO)(2)(CO)(6) structures have two bridging η(2)-μ-BO groups and formal Fe-Fe single bonds. Other Fe(2)(BO)(2)(CO)(n) (n = 7, 6) structures are found in which the two BO groups have coupled to form a bridging dioxodiborene (B(2)O(2)) ligand with B-B bonding distances of ~1.84 ?. All of these Fe(2)(μ-B(2)O(2))(CO)(n) structures have long Fe···Fe distances indicating a lack of direct iron-iron bonding. One of the singlet Fe(2)(BO)(2)(CO)(7) structures has such a bridging dioxodiborene ligand with cis stereochemistry functioning as a six-electron donor to the pair of iron atoms. In addition, the lowest energy triplet structures for both Fe(2)(BO)(2)(CO)(7) and Fe(2)(BO)(2)(CO)(6) have bridging dioxodiborene ligands with trans stereochemistry functioning as a four-electron donor to the pair of iron atoms.  相似文献   

3.
The iron carbonyl nitrosyls Fe 2(NO) 2(CO) n ( n = 7, 6, 5, 4, 3) have been studied by density functional theory (DFT) using the B3LYP and BP86 methods, for comparison of their predicted structures with those of isoelectronic cobalt carbonyl derivatives. The lowest energy structures for Fe 2(NO) 2(CO) 7 and Fe 2(NO) 2(CO) 6 have two NO bridges, and the lowest energy structure for Fe 2(NO) 2(CO) 5 has a single NO bridge with metal-metal distances (BP86) of 3.161, 2.598, and 2.426 A, respectively, corresponding to the formal metal-metal bond orders of zero, one, and two, respectively, required for the favored 18-electron configuration for the iron atoms. The heptacarbonyl Fe 2(NO) 2(CO) 7 is thermodynamically unstable with respect to CO loss to give Fe 2(NO) 2(CO) 6. The favored structures for the more highly unsaturated Fe 2(NO) 2(CO) 4 and Fe 2(NO) 2(CO) 3 also have bridging NO groups but avoid iron-iron bond orders higher than two by formal donation of five electrons from bridging NO groups with relatively short Fe-O distances. The lowest energy structures of the unsaturated Fe 2(NO) 2(CO) n derivatives ( n = 5, 4, 3) are significantly different from the isoelectronic cobalt carbonyls Co 2(CO) n +2 owing to the tendency for Fe 2(NO) 2(CO) n to form structures with bridging NO groups and metal-metal formal bond orders no higher than two.  相似文献   

4.
Gong X  Li QS  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2010,49(23):10820-10832
Recently the first boronyl (oxoboryl) complex [(c-C(6)H(11))(3)P](2)Pt(BO)Br was synthesized. The boronyl ligand in this complex is a member of the isoelectronic series BO(-) → CO → NO(+). The cobalt carbonyl boronyls Co(BO)(CO)(4) and Co(2)(BO)(2)(CO)(7), with cobalt in the formal d(8) +1 oxidation state, are thus isoelectronic with the familiar homoleptic iron carbonyls Fe(CO)(5) and Fe(2)(CO)(9). Density functional theory predicts Co(BO)(CO)(4) to have a trigonal bipyramidal structure with the BO group in an axial position. The tricarbonyl Co(BO)(CO)(3) is predicted to have a distorted square planar structure, similar to those of other 16-electron complexes of d(8) transition metals. Higher energy Co(BO)(CO)(n) (n = 3, 2) structures may be derived by removal of one (for n = 3) or two (for n = 2) CO groups from a trigonal bipyramidal Co(BO)(CO)(4) structure. Structures with a CO group bridging 17-electron Co(CO)(4) and Co(BO)(2)(CO)(3) units and no Co-Co bond are found for Co(2)(BO)(2)(CO)(8). However, Co(2)(BO)(2)(CO)(8) is not viable because of the predicted exothermic loss of CO to give Co(2)(BO)(2)(CO)(7). The lowest lying Co(2)(BO)(2)(CO)(7) structure is a triply bridged (2BO + CO) structure closely related to the experimental Fe(2)(CO)(9) structure. However, other relatively low energy Co(2)(BO)(2)(CO)(7) structures are found, either with a single CO bridge, similar to the experimental Os(2)(CO)(8)(μ-CO) structure; or with 17-electron Co(CO)(4) and Co(BO)(2)(CO)(3) units joined by a single Co-Co bond with or without semibridging carbonyl groups. Both triplet and singlet Co(2)(BO)(2)(CO)(6) structures are found. The lowest lying triplet Co(2)(BO)(2)(CO)(6) structures have a Co(CO)(3)(BO)(2) unit coordinated to a Co(CO)(3) unit through the oxygen atoms of the boronyl groups with a non-bonding ~4.3 ? Co···Co distance. The lowest lying singlet Co(2)(BO)(2)(CO)(6) structures have either two three-electron donor bridging η(2)-μ-BO groups and no Co···Co bond or one such three-electron donor BO group and a formal Co-Co single bond.  相似文献   

5.
The iron trifluorophosphane complexes [Fe(PF(3))(n)] (n=4, 5), [Fe(2)(PF(3))(n)] (n=8, 9), [H(2)Fe(PF(3))(4)], and [Fe(2)(PF(2))(2)(PF(3))(6)] have been studied by density functional theory. The lowest energy structures of [Fe(PF(3))(4)] and [Fe(PF(3))(5)] are a triplet tetrahedron and a singlet trigonal bipyramid, respectively. Both cis and trans octahedral structures were found for [H(2)Fe(PF(3))(4)] with the cis isomer lying lower in energy by approximately 10 kcal mol(-1). The lowest energy structure for [Fe(2)(PF(3))(8)] has two [Fe(PF(3))(4)] units linked only by an iron-iron bond of length 2.505 A consistent with the formal Fe=Fe double bond required to give both iron atoms the favored 18-electron configuration. In the lowest energy structure for [Fe(2)(PF(3))(9)] one of the iron atoms has inserted into a P-F bond of one of the PF(3) ligands to give a structure [(F(3)P)(4)Fe<--PF(2)Fe(F)(PF(3))(4)] with a bridging PF(2) group and a direct Fe-F bond. A bridging PF(3) group is found in a considerably higher energy [Fe(2)(PF(3))(9)] structure at approximately 30 kcal mol(-1) above the global minimum. However, this bridging PF(3) group keeps the two iron atoms too far apart (approximately 4 A) for the direct iron-iron bond required to give the iron atoms the favored 18-electron configuration. The preferred structure for [Fe(2)(PF(2))(2)(PF(3))(6)] has a bridging PF(2) group, as expected. However, this bridging PF(2) group bonds to one of the iron atoms through an P-Fe covalent bond and to the other iron through an F-->Fe dative bond, leaving an uncomplexed phosphorus lone pair.  相似文献   

6.
Wang H  Sun Z  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2011,50(19):9256-9265
The trinuclear derivative Fe(3)(C(8)H(8))(3) was synthesized in 2009 by Lavallo and Grubbs via the reaction of Fe(C(8)H(8))(2) with a bulky heterocyclic carbene. This fascinating structure is the first example of a derivative of the well-known Fe(3)(CO)(12) in which all 12 carbonyl groups have been replaced by hydrocarbon ligands. The density functional theory predicts a structure having a central Fe(3) equilateral triangle with ~2.9 ? Fe-Fe single bonded edges bridged by η(5),η(3)-C(8)H(8) ligands. This structure is close to the experimental structure, determined by X-ray crystallography. The related hypoelectronic M(3)(C(8)H(8))(3) derivatives (M = Cr, V, Ti) are predicted to have central scalene M(3) triangles with edge lengths and Wiberg bond indices (WBIs) corresponding to one formal single M-M bond, one formal double M═M bond, and one formal triple M≡M bond. For Mn(3)(C(8)H(8))(3), both a doublet structure with one Mn═Mn double bond and two Mn-Mn single bonds in the Mn(3) triangle, and a quartet structure with two Mn═Mn double bonds and one Mn-Mn single bond are predicted. The hyperelectronic derivatives M(3)(C(8)H(8))(3) have weaker direct M-M interactions in their M(3) triangles, as indicated by both the M-M distances and the WBIs. Thus, Ni(3)(C(8)H(8))(3) has bis(trihapto) η(3),η(3)-C(8)H(8) ligands bridging the edges of a central approximately equilateral Ni(3) triangle with long Ni···Ni distances of ~3.7 ?. The WBIs indicate very little direct Ni-Ni bonding in this Ni(3) triangle and thus a local nickel environment in the singlet Ni(3)(C(8)H(8))(3) similar to that observed for diallylnickel (η(3)-C(3)H(5))(2)Ni.  相似文献   

7.
Wang H  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2006,45(26):10849-10858
The manganese carbonyl nitrosyls Mn(NO)(CO)4, Mn2(NO)2(CO)n (n = 7, 6, 5, 4), and Mn3(NO)3(CO)9 have been studied by density functional theory (DFT) using the B3LYP and BP86 methods for comparison of their predicted structures with those of isoelectronic iron carbonyl derivatives. DFT predicts a trigonal bipyramidal structure for Mn(NO)(CO)4 with an equatorial NO group very close to the experimental structure. The predicted lowest energy structure for Mn2(NO)2(CO)7 has two bridging NO groups in contrast to the known structure of the isoelectronic Fe2(CO)9, which has three bridging CO groups. The structures for the unsaturated binuclear Mn2(NO)2(CO)n (n = 6, 5, 4) derivatives are similar to those of the corresponding binuclear iron carbonyls Fe2(CO)n+2 derivatives but always with a preference of bridging NO groups over bridging CO groups. The trinuclear Mn3(NO)3(CO)9 is predicted to have a structure analogous to the known structure for Fe3(CO)12 but with two bridging NO groups rather than two bridging CO groups across one of the metal-metal edges of the M3 triangle. The dark red solid photolysis product of Mn(NO)(CO)4 characterized by its nu(CO) and nu(NO) frequencies approximately 45 years ago is suggested by these DFT studies not to be the originally assumed Mn2(NO)2(CO)7 analogous to Fe2(CO)9. Instead, this photolysis product appears to be Mn2(NO)2(CO)5 with a Mn(triple bond)Mn formal triple bond analogous to (eta5-C5H5)2V2(CO)5 obtained from the photolysis of (eta5-C5H5)V(CO)4.  相似文献   

8.
Azulene is reported to react with Mn(2)(CO)(10) to give trans-C(10)H(8)Mn(2)(CO)(6), which has been shown by X-ray crystallography to have a bis(pentahapto) structure with no metal-metal bond. This structure is found by density functional theory to be the lowest energy C(10)H(8)Mn(2)(CO)(6) structure. However, a corresponding bis(pentahapto) cis-C(10)H(8)Mn(2)(CO)(6) structure, also without an Mn···Mn bond, lies within ~1 kcal mol(-1) of this global minimum. The lowest energy C(10)H(8)Mn(2)(CO)(5) structure is singlet cis-η(5),η(5)-C(10)H(8)Mn(2)(CO)(5) with an Mn→Mn dative bond from the Mn(CO)(3) group to the Mn(CO)(2) group. However, a singlet cis-η(6),η(4)-C(10)H(8)Mn(2)(CO)(5) structure with a normal Mn-Mn single bond lies within ~6 kcal mol(-1) of this global minimum. The lowest energy structures of the more highly unsaturated C(10)H(8)Mn(2)(CO)(n) (n = 4, 3, 2) systems all have cis geometries and manganese-manganese bonds of various orders. The corresponding global minima are triplet cis-η(5),η(3)-C(10)H(8)Mn(2)(CO)(3)(η(2)-μ-CO) for the tetracarbonyl with a four-electron donor bridging carbonyl group, singlet cis-η(5),η(5)-C(10)H(8)Mn(2)(CO)(3) for the tricarbonyl, and triplet cis-η(6),η(4)-C(10)H(8)Mn(2)(CO)(η(2)-μ-CO) for the dicarbonyl.  相似文献   

9.
The variety of known very stable PF(3) metal derivatives analogous to metal carbonyls suggests the synthesis of SF(3) metal derivatives analogous to metal nitrosyls. However, the only known SF(3) metal complex is the structurally uncharacterized (Et(3)P)(2)Ir(CO)(Cl)(F)(SF(3)) synthesized by Cockman, Ebsworth, and Holloway in 1987 and suggested by electron counting to have a one-electron donor SF(3) group rather than a three-electron donor SF(3) group. In this connection, the possibility of synthesizing SF(3) metal derivatives analogous to metal nitrosyls has been investigated using density functional theory. The [M]SF(3) derivatives with [M] = V(CO)(5), Mn(CO)(4), Co(CO)(3), Ir(CO)(3), (C(5)H(5))Cr(CO)(2), (C(5)H(5))Fe(CO), and (C(5)H(5))Ni analogous to known metal nitrosyl derivatives are all predicted to be thermodynamically disfavored with respect to the corresponding [M](SF(2))(F) derivatives by energies ranging from 19.5 kcal/mol for Mn(SF(3))(CO)(4) to 5.4 kcal/mol for Co(SF(3))(CO)(3). By contrast, the isoelectronic [M]PF(3) derivatives with [M] = Cr(CO)(5), Fe(CO)(4), Ni(CO)(3), (C(5)H(5))Mn(CO)(2), (C(5)H(5))Co(CO), and (C(5)H(5))Cu are all very strongly thermodynamically favored with respect to the corresponding [M](PF(2))(F) derivatives by energies ranging from 64.3 kcal/mol for Cr(PF(3))(CO)(5) to 31.6 kcal/mol for (C(5)H(5))Co(PF(3))(CO). The known six-coordinate (Et(3)P)(2)Ir(CO)(Cl)(F)(SF(3)) is also predicted to be stable relative to the seven-coordinate (Et(3)P)(2)Ir(CO)(Cl)(F)(2)(SF(2)). Most of the metal SF(3) complexes found in this work are singlet structures containing three-electron donor SF(3) ligands with tetrahedral sulfur coordination. However, two examples of triplet spin state metal SF(3) complexes, namely, the lowest energy (C(5)H(5))Fe(SF(3))(CO) structure and a higher energy Co(SF(3))(CO)(3) structure, are found containing one-electron donor SF(3) ligands with pseudo square pyramidal sulfur coordination with a stereochemically active lone electron pair.  相似文献   

10.
The anion [Fe(2)(S(2)C(3)H(6))(CN)(CO)(4)(PMe(3))](-) (2(-)) is protonated by sulfuric or toluenesulfonic acid to give HFe(2)(S(2)C(3)H(6))(CN)(CO)(4)(PMe(3)) (2H), the structure of which has the hydride bridging the Fe atoms with the PMe(3) and CN(-) trans to the same sulfur atom. (1)H, (13)C, and (31)P NMR spectroscopy revealed that HFe(2)(S(2)C(3)H(6))(CN)(CO)(4)(PMe(3)) is stereochemically rigid on the NMR time scale with four inequivalent carbonyl ligands. Treatment of 2(-) with (Me(3)O)BF(4) gave Fe(2)(S(2)C(3)H(6))(CNMe)(CO)(4)(PMe(3)) (2Me). The Et(4)NCN-induced reaction of Fe(2)(S(2)C(3)H(6))(CO)(6) with P(OMe)(3) gave [Fe(2)(S(2)C(3)H(6))(CN)(CO)(4)[P(OMe)(3)]](-) (4). Spectroscopic and electrochemical measurements indicate that 2H can be further protonated at nitrogen to give [HFe(2)(S(2)C(3)H(6))(CNH)(CO)(4)(PMe(3))](+) (2H(2)(+)). Electrochemical and analytical data show that reduction of 2H(2)(+) gives H(2) and 2(-). Parallel electrochemical studies on [HFe(2)(S(2)C(3)H(6))(CO)(4)(PMe(3))(2)](+) (3H(+)) in acidic solutions led also to catalytic proton reduction. The 3H(+)/3H couple is reversible, whereas the 2H(2)(+)/2H(2) couple is not, because of the efficiency of the latter as a proton reduction catalyst. Proton reduction is proposed to involve protonation of reduced diiron hydrides. DFT calculations establish that the regiochemistry of protonation is subtly dependent on the coligands but is more favorable to occur at the Fe-Fe bond for [Fe(2)(S(2)C(3)H(6))(CN)(CO)(4)(PMe(3))](-) than for [Fe(2)(S(2)C(3)H(6))(CN)(CO)(4)(PH(3))](-) or [Fe(2)(S(2)C(3)H(6))(CN)(CO)(4)[P(OMe)(3)]](-). The Fe(2)H unit stabilizes the conformer with eclipsed CN and PMe(3) because of an attractive electrostatic interaction between these ligands.  相似文献   

11.
Model compounds have been found to structurally mimic the catalytic hydrogen-producing active site of Fe-Fe hydrogenases and are being explored as functional models. The time-dependent behavior of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) and Fe(2)(μ-S(2)C(2)H(4))(CO)(6) is reviewed and new ultrafast UV- and visible-excitation/IR-probe measurements of the carbonyl stretching region are presented. Ground-state and excited-state electronic and vibrational properties of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) were studied with density functional theory (DFT) calculations. For Fe(2)(μ-S(2)C(3)H(6))(CO)(6) excited with 266 nm, long-lived signals (τ = 3.7 ± 0.26 μs) are assigned to loss of a CO ligand. For 355 and 532 nm excitation, short-lived (τ = 150 ± 17 ps) bands are observed in addition to CO-loss product. Short-lived transient absorption intensities are smaller for 355 nm and much larger for 532 nm excitation and are assigned to a short-lived photoproduct resulting from excited electronic state structural reorganization of the Fe-Fe bond. Because these molecules are tethered by bridging disulfur ligands, this extended di-iron bond relaxes during the excited state decay. Interestingly, and perhaps fortuitously, the time-dependent DFT-optimized exited-state geometry of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) with a semibridging CO is reminiscent of the geometry of the Fe(2)S(2) subcluster of the active site observed in Fe-Fe hydrogenase X-ray crystal structures. We suggest these wavelength-dependent excitation dynamics could significantly alter potential mechanisms for light-driven catalysis.  相似文献   

12.
The first structural characterization of the highly unsaturated nonacarbonyldivanadium V(2)(CO)(9) is reported using density functional theory (DFT) with the B3LYP and BP86 functionals. A complicated collection of minima with rather closely spaced energies was found. However, none of these many V(2)(CO)(9) isomers was found to have a sufficiently short vanadium-vanadium distance for the VV quadruple bond required to give both metal atoms the favored 18-electron configuration. Triplet structures for V(2)(CO)(9) were found to be competitive in energy with related singlet structures. Thus, the two lowest-energy isomers of V(2)(CO)(9) are triplets. The four lowest-energy isomers of V(2)(CO)(9) all have three very unsymmetrical bridging CO groups (typically "short" and "long" M-CO distances differing by 0.4-0.5 A) rather than the symmetrical bridging CO groups found experimentally in Fe(2)(CO)(9) and predicted for M(2)(CO)(9) (M = Cr and Mn) from earlier studies. The VV distances in each of these four isomers suggest a metal-metal triple bond. Next higher in energy for V(2)(CO)(9) are three structures with single four-electron donor bridging CO groups identified by their computed nu(CO) frequencies and V-O distances. The V-V distances in these three isomers suggest metal-metal single bonds. This study of V(2)(CO)(9) supports the following general points: (1) Metal-metal bonds of an order higher than three are not favorable in metal carbonyl chemistry. (2) The 18-electron rule for metal carbonyls begins to break down when the metal atom, i.e., vanadium in this case, has only five valence electrons.  相似文献   

13.
[{mu-(Pyridazine-N(1):N(2))}Fe(2)(mu-CO)(CO)(6)](1) reacts with aryllithium reagents, ArLi (Ar = C(6)H(5), m-CH(3)C(6)H(4)) followed by treatment with Me(3)SiCl to give the novel pyridazine-coordinated diiron bridging siloxycarbene complexes [(C(4)H(4)N(2))Fe(2){mu-C(OSiMe(3))Ar}(CO)(6)](2, Ar = C(6)H(5); 3, Ar =m-CH(3)C(6)H(4)). Complex 2 reacts with HBF(4).Et(2)O at low temperature to yield a cationic bridging carbyne complex [(C(4)H(4)N(2))Fe(2)(mu-CC(6)H(5))(CO)(6)]BF(4)(4). Cationic 4 reacts with NaBH(4) in THF at low temperature to afford the diiron bridging arylcarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(H)C(6)H(5)}(CO)(6)](5). Unexpectedly, the reaction of 4 with NaSCH(3) under similar conditions gave the bridging arylcarbene complex 5 and a carbonyl-coordinated diiron bridging carbene complex [Fe(2){mu-C(SCH(3))C(6)H(5)}(CO)(7)](6), while the reaction of NaSC(6)H(4)CH(3)-p with 4 affords the expected bridging arylthiocarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(SC(6)H(4)CH(3)-p)C(6)H(5)}(CO)(6)](7), which can be converted into a novel diiron bridging carbyne complex with a thiolato-bridged ligand, [Fe(2)(mu-CC(6)H(5))(mu-SC(6)H(4)CH(3)-p)(CO)(6)](8). Cationic can also react with the carbonylmetal anionic compound Na(2)[Fe(CO)(4)] to yield complex 5, while the reactions of 4 with carbonylmetal anionic compounds Na[M(CO)(5)(CN)](M = Cr, Mo, W) produce the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [(C(4)H(4)N(2))Fe(2)-{mu-C(C(6)H(5))NCM(CO)(5)}(CO)(6)](9, M = Cr; 10, M = Mo; 11, M = W). The structures of complexes 2, 5, 6, 8, and 9 have been established by X-ray diffraction studies.  相似文献   

14.
Zhou L  Li G  Li QS  Xie Y  King RB 《Inorganic chemistry》2011,50(24):12531-12538
Fluorophosphinidene (PF) is a versatile ligand found experimentally in the transient species M(CO)(5)(PF) (M = Cr, Mo) as well as the stable cluster Ru(5)(CO)(15)(μ(4)-PF). The PF ligand can function as either a bent two-electron donor or a linear four-electron donor with the former being more common. The mononuclear tetracarbonyl Fe(PF)(CO)(4) is predicted to have a trigonal bipyramidal structure analogous to Fe(CO)(5) but with a bent PF ligand replacing one of the equatorial CO groups. The tricarbonyl Fe(PF)(CO)(3) is predicted to have two low-energy singlet structures, namely, one with a bent PF ligand and a 16-electron iron configuration and the other with a linear PF ligand and the favored 18-electron iron configuration. Low-energy structures of the dicarbonyl Fe(PF)(CO)(2) have bent PF ligands and triplet spin multiplicities. The lowest energy structures of the binuclear Fe(2)(PF)(CO)(8) and Fe(2)(PF)(2)(CO)(7) derivatives are triply bridged structures analogous to the experimental structure of the analogous Fe(2)(CO)(9). The three bridges in each Fe(2)(PF)(CO)(8) and Fe(2)(PF)(2)(CO)(7) structure include all of the PF ligands. Other types of low-energy Fe(2)(PF)(2)(CO)(7) structures include the phosphorus-bridging carbonyl structure (FP)(2)COFe(2)(CO)(6), lying only ~2 kcal/mol above the global minimum, as well as an Fe(2)(CO)(7)(μ-P(2)F(2)) structure in which the two PF groups have coupled to form a difluorodiphosphene ligand unsymmetrically bridging the central Fe(2) unit.  相似文献   

15.
Adams RD  Smith JL 《Inorganic chemistry》2005,44(12):4276-4281
The reaction of Rh(4)(CO)(12) with Ph(3)GeH at 97 degrees C has yielded the first rhodium cluster complexes containing bridging germylene and germylyne ligands: Rh(8)(CO)(12)(mu(4)-GePh)(6), 9, and Rh(3)(CO)(5)(GePh(3))(mu-GePh(2))(3)(mu(3)-GePh)(mu-H), 10. When the reaction is performed under hydrogen, the yield of 9 is increased to 42% and no 10 is formed. Compound 9 contains a cluster of eight rhodium atoms arranged in the form of a distorted cube. There are six mu(4)-GePh groups bridging each face of this distorted cube. Four of the rhodium atoms have two terminal carbonyl ligands, while the remaining four rhodium atoms have only one carbonyl ligand. Compound 10 contains a triangular cluster of three rhodium atoms with one terminal GePh(3) ligand, three bridging GePh(2) ligands, and one triply bridging GePh ligand. There is also one hydrido ligand that is believed to bridge one of the Rh-Ge bonds. Compound 9 reacted with PPhMe(2) at 25 degrees C to give the tetraphosphine derivative Rh(8)(CO)(8)(PPhMe(2))(4)(mu(4)-GePh)(6), 11. The structure of 11 is similar to 9 except that a PPhMe(2) ligand has replaced a carbonyl ligand on each the four Rh(CO)(2) groups. Compound 10 reacted with CO at 68 degrees C to give the complex Rh(3)(CO)(6)(mu-GePh(2))(3)(mu(3)-GePh), 12. Compound 12 is formed by the loss of the hydrido ligand and the terminal GePh(3) ligand from 10 and the addition of one carbonyl ligand. All compounds were fully characterized by IR, NMR, elemental, and single-crystal X-ray diffraction analyses.  相似文献   

16.
A number of evanescent unsubstituted homoleptic allyl derivatives M(C(3)H(5))(n) of the first row transition metals have been reported in the literature. In addition, the much more thermally stable silylated derivatives M[C(3)H(3)(SiMe(3))(2)](2) (M = Cr, Fe, Co, Ni) are reported to survive vacuum sublimation without significant decomposition. In this connection, the complete series of homoleptic allyl derivatives M(C(3)H(5))(n) (n = 2, 3; M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) have been studied theoretically using density functional theory. In most of the lowest energy predicted M(C(3)H(5))(n) structures all of the allyl groups are bonded as trihapto η(3)-C(3)H(5) ligands and the metals have considerably less than the normally favored 18-electron configuration. Such ligands can be considered formally as bidentate ligands with the metal atom connected to the centers of the two C-C bonds of the η(3)-C(3)H(5) group. The later transition metal diallyls M(C(3)H(5))(2) (M = Cr, Mn, Fe, Co, Ni) form two stereoisomers of similar relative energies, namely the C(2h) staggered isomer and the C(2v) eclipsed isomer with the orientation of the η(3)-C(3)H(5) groups corresponding to square planar metal coordination of the bidentate η(3)-C(3)H(5) ligands. The staggered and eclipsed Ni(C(3)H(5))(2) isomers have been observed experimentally by NMR. Less symmetrical M(C(3)H(5))(2) structures are found for the earlier transition metals Sc, Ti, and V in which the orientation of the allyl groups corresponds to tetrahedral metal coordination. The triallylmetal derivatives M(C(3)H(5))(3) are predicted to be thermodynamically viable with respect to allyl loss to give the corresponding diallylmetal derivatives, except for triallylnickel. The lowest energy Ni(C(3)H(5))(3) structure has two trihaptoallyl ligands and one monohaptoallyl ligand, whereas the lowest energy Mn(C(3)H(5))(3) structures have only one trihaptoallyl ligand and two monohaptoallyl ligands. Otherwise, the M(C(3)H(5))(3) complexes have structures with three trihaptoallyl ligands corresponding formally to octahedral metal coordination. The M(C(3)H(5))(3) complexes (M = Cr, Co) thus correspond to a well-known series of "classical" octahedral coordination complexes, namely, those of the d(3) Cr(III) and the d(6) Co(III), respectively.  相似文献   

17.
Proposed electrocatalytic proton reduction intermediates of hydrogenase mimics were synthesized, observed, and studied computationally. A new mechanism for H(2) generation appears to involve Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3), the dianions {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(μ-CO)Fe(CO)(2)](2-) (3(2-)), the bridging hydride {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(μ-CO)(μ-H)Fe(CO)(2)]}(-), 3H(-)(bridging), and the terminal hydride 3H(-)(term-stag), {[1,2-S(2)C(6)H(4)][HFe(CO)(3)Fe(CO)(3)]}(-), as intermediates. The dimeric sodium derivative of 3(2-), {[Na(2)(THF)(OEt(2))(3)][3(2-)]}(2) (4) was isolated from reaction of Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3) with excess sodium and was characterized by X-ray crystallography. It possesses a bridging CO and an unsymmetrically bridging dithiolate ligand. Complex 4 reacts with 4 equiv. of triflic or benzoic acid (2 equiv. per Fe center) to generate H(2) and 3 in 75% and 60% yields, respectively. Reaction of 4 with 2 equiv. of benzoic acid generated two hydrides in a 1.7 : 1 ratio (by (1)H NMR spectroscopy). Chemical shift calculations on geometry optimized structures of possible hydride isomers strongly suggest that the main product, 3H(-)(bridging), possesses a bridging hydride ligand, while the minor product is a terminal hydride, 3H(-)(term-stag). Computational studies support a catalytic proton reduction mechanism involving a two-electron reduction of 3 that severs an Fe-S bond to generate a dangling thiolate and an electron rich Fe center. The latter iron center is the initial site of protonation, and this event is followed by protonation at the dangling thiolate to give the thiol thiolate [Fe(2)H(CO)(6)(1,2-SHSC(6)H(4))]. This species then undergoes an intramolecular acid-base reaction to form a dihydrogen complex that loses H(2) and regenerates 3.  相似文献   

18.
The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (μ-S(CH(2))(3)S)Fe(2)(CO)(4)(PMe(3))(2) has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.  相似文献   

19.
The equilibrium geometries, thermochemistry, and vibrational frequencies of the homoleptic binuclear rhenium carbonyls Re2(CO)n (n = 10, 9, 8, 7) were determined using the MPW1PW91 and BP86 methods from density functional theory (DFT) with the effective core potential basis sets LANL2DZ and SDD. In all cases triplet structures for Re2(CO)n were found to be unfavorable energetically relative to singlet structures, in contrast to corresponding Mn2(CO)n derivatives, apparently owing to the larger ligand field splitting of rhenium. For M2(CO)10 (M = Mn, Re) the unbridged structures (OC)5M-M(CO)5 are preferred energetically over structures with bridging CO groups. For M2(CO)9 (M = Mn, Re) the two low energy structures are (OC)4M(micro-CO)M(CO)4 with an M-M single bond and a four-electron donor bridging CO group and (OC)4M[double bond, length as m-dash]M(CO)5 with no bridging CO groups and an M[double bond, length as m-dash]M distance suggesting a double bond. The lowest energy structures for Re2(CO)8 have Re[triple bond, length as m-dash]Re distances in the range 2.6-2.7 A suggesting the triple bonds required to give the Re atoms the favored 18-electron configuration. Low energy structures for Re2(CO)7 are either of the type (OC)(4)M[triple bond, length as m-dash]M(CO)3 with short metal-metal distances suggesting triple bonds or have a single four-electron donor bridging CO group and longer M-M distances consistent with single or double bonds. The 18-electron rule thus appears to be violated in these highly unsaturated Re2(CO)7 structures.  相似文献   

20.
New silver(i) double salts (Ag(2)C(2))(AgCF(3)CO(2))(8)(3-pyCONH(2))(2)(H(2)O)(4) (1), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(4-pyCONH(2))(H(2)O)].H(2)O (2), (Ag(2)C(2))(AgCF(3)CO(2))(6)(3-pyCONH(2))(4) (3), (Ag(2)C(2))(AgCF(3)CO(2))(6)(3-pyCN)(2) (4) and (Ag(2)C(2))(AgCF(3)CO(2))(4)(4-pyCN)(2) (5) (n-pyCONH(2) is pyridine-n-carboxamide, n-pyCN is n-cyanopyridine; n=3, 4) have been synthesized by the hydrothermal method. All five compounds contain polyhedral silver(i) cages each encapsulating a C(2)(2-) dianion. Compounds 1, 3 ,4 and 5 exhibit three-dimensional structures, whereas compound 2 is a two-dimensional network. The structure of 1 is constructed from the linkage of a branched-tree architecture via hydrogen bonds. Unlike 4 and 5, which involve the connection of n-cyanopyridine (n=3, 4) with silver columns, 3 results from the linkage of discrete silver cages via pyridine-3-carboxamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号