首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.  相似文献   

2.
It is critical to develop a cost-effective quantitative/semiquantitative assay for rapid diagnosis and on-site detection of toxic or harmful substances. Here, a naked-eye based semiquantitative immunochromatographic strip (NSI-strip) was developed, on which three test lines (TLs, TL-I, TL-II and TL-III) were dispensed on a nitrocellulose membrane to form the test zone. Similar as the traditional strip assay for small molecule, the NSI-strip assay was also based on the competitive theory, difference was that the analyte competed three times with the capture reagent for the limited number of antibody binding sites. After the assay, the number of TLs developed in the test zone was inversely proportional to the analyte concentration, thus analyte content levels could be determined by observing the appeared number of TLs. Taking aflatoxin B1 as the model analyte, visual detection limit of the NSI-strip was 0.06 ng mL−1 and threshold concentrations for TL-I–III were 0.125, 0.5, and 2.0 ng mL−1, respectively. Therefore, according to the appeared number of TLs, the following concentration ranges would be detectable by visual examination: 0–0.06 ng mL−1 (negative samples), and 0.06–0.125 ng mL−1, 0.125–0.5 ng mL−1, 0.5–2.0 ng mL−1 and >2.0 ng mL−1 (positive samples). That was to say, compared to traditional strips the NSI-strip could offer more parameter information of the target analyte content. In this way, the NSI-strip improved the qualitative presence/absence detection of traditional strips by measuring the content (range) of target analytes semiquantitatively.  相似文献   

3.
4.
MicroRNAs (miRNAs) play a considerable role in cancer occurrence and development, and have been identified as promising noninvasive biomarkers. The authors describe a voltammetric method for the determination of the cancer biomarker microRNA-21 (miRNA). It is based on a combination of a universal DNA signal transducer and isothermal target recycling amplification. A hairpin capture probe is bound to the target miRNA to form a duplex structure and to create a toehold in the transducer for initiating the target recycling amplification reaction. In contrast to traditional capture probes, a mismatched site is introduced to improve its ability to capture the target. In order to reduce the complex design procedures of the sequence and widen the applicability of this method, a signal transducer is introduced. Under optimal conditions, response to target miRNA is linear in the 0.5 to 2000 pM concentration range, with a 56 fM. detection limit (at an S/N ratio of 3). In order to characterize the process of target recycling and the stepwise modification of the electrode, real-time fluorescence, agarose gel electrophoresis, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry were used. The results indicate that this isothermal target recycling amplification results in an electrochemical biosensing scheme with wide potential for sensing other bioanalytes.
Graphical abstract Schematic illustration of the electrochemical biosensing platform for miRNA-21 detection based on isothermal target recycling amplification and DNA signal transducer triggered strategy.
  相似文献   

5.
Hypoxia-inducible factor-1 (HIF-1) is among the most important indicators of hypoxia in evaluating severity of many diseases. In this work, a novel method for HIF-1 detection is proposed by using electrochemical techniques based on small molecule binding DNA. In this method, since the designed DNA sequence can specifically bind with either an electroactive small molecule or HIF-1, the signal readout is inversely proportional to HIF-1 concentration, thus a simple and easily-operated method for HIF-1 detection can be developed. With the proposed method, HIF-1 can be determined in a linear range from 5 to 25 nM with a detection limit of 2.8 nM. Furthermore, the proposed method can be directly used to assay HIF-1 in placenta tissue, and the assay results can reliably reflect the severity of preeclampsia, a very dangerous condition during pregnancy. The proposed method also shows desirable sensitivity, high selectivity and excellent reproducibility, so this method can have potential applications in clinical practice.  相似文献   

6.
Microarray technology has been widely applied in biomedical research. The key to microarray study is to develop efficient immobilization method. In this study, we designed a new reversible microarray immobilization method based on thiol-quinone reaction. A quinone-functionalized slide was fabricated through H2O2 treatment of dopamine-coated slides. Various thiol-containing molecules can be anchored onto the quinone-functionalized slides via thioether linker, which could be ...  相似文献   

7.
Lee J  Min DH 《The Analyst》2012,137(9):2024-2026
A new assay platform for DNA exonuclease activity is developed based on the preferential binding of single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA) to graphene oxide. This approach allows a simple and quantitative activity measurement in a short time at low cost.  相似文献   

8.
Using flexible heat flux sensors mounted on the lateral and bottom of outside reactor wall, a new approach is developed for isothermal calorimetric technique to overcome the disadvantages of heat flow calorimetric methods. Although the proposed system needs a calibration procedure before or after the reaction completion to evaluate the lateral heat transfer area, the measurement is versatile and totally independent of the reaction media, jacket fluid, and the variations of heat transfer coefficient. Knowledge of the variations of the heat transfer coefficient is essential for the effective control and scale up of a reactor and can be inferred by the new method during the reaction. The stirrer power and the heat loss can be determined easily as well. No pre-calibration is needed for the sensors and no heating element is applied inside the reactor for temperature control. Experiments are carried out to validate the performance of the new proposed technique. With the help of a heater, the heat generated in the reactor is measured at various levels of power input. The predicted heater power inputs are in good agreement with the corresponding heat inputs. The relative detection limit in the range of 0.8–1 W L−1 is expected for this technique. Using the hydrolysis of acetic anhydride, the heat of reaction at 25°C is determined, which is within the range reported in the literatures. The capability of the system to deal with the variations in the overall heat transfer coefficient is also demonstrated using a simulated reaction.  相似文献   

9.
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6]3+, RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL−1 to 10 U mL−1, with a detection limit down to 0.03 U mL−1. Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence.  相似文献   

10.
A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO3) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO3 layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO3-AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO3. The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH3)63+ as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18 × 1013 strands cm−2 and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen)33+/2+ (phen = 1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen)33+/2+ increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0 × 10−13 M to 1.0 × 10−8 M with a regression coefficient of 0.9961. The detection limit was estimated to be 7.2 × 10−14 M based on 3σ.  相似文献   

11.
《中国化学快报》2023,34(3):107536
5-Formylcytosine (5fC), as an important epigenetic modification, plays a vital role in diverse biological processes and multiple diseases by regulating gene expression. Owing to the extremely low abundance of 5fC in all mammalian tissues and high structural similarity with other cytosine derivatives, the precise and sensitive detection of 5fC is challenging. Herein, a photo-elutable and template-free isothermal amplification strategy has been proposed for the sensitive detection of 5fC in genomic DNA based on 5fC-specific biotinylation, enrichment, photocleavage, and terminal deoxynucleotidyl transferase (TdT)-assisted fluorescence signal amplification, which is termed 5fC-PTIAS. By introducing the highly specific chemolabeling and the one-step photoelution processes, this strategy possesses a minimal nonspecific background as well as a much higher amplification efficiency. With the high signal-to-noise ratio, this strategy can achieve the accurate quantification of 5fC in various biological samples including mouse brain, kidney, and liver, with a limit of detection (LOD) of 0.025‰ in DNA (S/N = 3). These results not only confirm the widespread distribution of 5fC but also indicate its significant variation in different tissues and ages. The bisulfite- and mass spectrometry-free strategy is highly sensitive, selective, and easily mastered, holding great promise in detecting other epigenetic modifications with much lower levels.  相似文献   

12.
A novel multiplexed immunochromatographic assay (ICA) based on a time-resolved chemiluminescence (CL) strategy was developed for quantitative detection of β-agonists, by utilizing ractopamine (RAC) and clenbuterol (CLE) as the models. Different from conventional multiplexed ICA methods which usually require two or more test lines, this strategy was developed for detection of two β-agonists by using only one test line on the nitrocellulose membrane. In this study, horseradish peroxidase and alkaline phosphatase were used as the signal probes to label RAC antibody and CLE antibody, respectively. The two CL reactions with flash type and glow type kinetics characteristics were triggered simultaneously by injecting the coreactants, then the signals for RAC and CLE detections were recorded at 3 s and 300 s after coreactants injection, respectively. Owing to the utilization of CL detection, this protocol showed ideal sensitivity for quantitation. Under the optimal conditions, the detection limits for RAC and CLE were 0.17 ng mL−1 and 0.067 ng mL−1 (S/N = 3), respectively. The whole assay process can be accomplished within 20 min without complicated sample pretreatment. The proposed method was successfully applied for the detection of RAC and CLE in spiked swine urine. It opens up a new pathway for designing a low cost, time-efficiency and multiplexed strategy for rapid screening and field assay.  相似文献   

13.
Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings.  相似文献   

14.
The authors describe an electrochemical strategy for highly sensitive determination of ATP that involves (a) aptamer-based target recognition, (b) enzyme-free dendritic DNA nanoassembly amplification with multiplex binding of the biotin-strepavidin system, and (c) enzyme-amplified differential pulse voltammetric readout. In the presence of ATP, binding of ATP to the aptamer releases trigger DNA from the double-stranded complex between ATP aptamer and trigger DNA. The single-stranded thiolated capture probe, chemisorbed on the gold electrode surface, captures the released trigger DNA via hybridization. The toehold of the trigger DNA is recombined with one end of the first substrate DNA (1) which is on its other end biotinylated and blocked, with loops, by a counterstrand. The latter is removed by a complementary single-stranded helper (1) exposing two toeholds and two identical complimentary sequences for a second biotinylated substrate DNA (2). The latter, which is double-stranded except for the toehold, binds to one of these two sites. It is then stripped from its counter strand by another single-stranded helper DNA 2, exposing a toehold to bind another substrate DNA 1. On this substrate, another cycle with dentrimeric bransching can start.Substrate 1 with its two binding sites for substrate 2 initiates the assembly of dendritic DNA on the surface of the gold electrode, which finally possesses numerous biotins at the terminal ends of both of the associated substrate DNAs. Subsequent multiplex binding of streptavidinylated alkaline phosphatase and enzyme-amplified electrochemical readout leads to a highly sensitive electrochemical ATP aptasensor. If operated in the DPV mode, the current as measured at a typical working potential of 0.25 V (vs. Ag/AgCl) increases linearly over the 10 nM to 10 μM logarithmic ATP concentration range, and the detection limit is 5.8 nM (at an S/N ratio of 3). The assay is highly specific and reproducible. It was successfully applied to the detection of ATP in spiked human serum samples.
Graphical Abstract Schematic of the electrochemical strategy for adenosine triphosphate detection using aptamer-based target recognition and dendritic DNA nanoassembly amplification
  相似文献   

15.
DNA sequence design based on template strategy   总被引:6,自引:0,他引:6  
In DNA based computation and DNA nanotechnology, the design of proper DNA sequences has turned out to be an elementary problem. This paper takes a further look at the template strategy proposed in work by Frutos, A. G. et al. (Nucleic Acids Res. 1997, 25, 4748-4757). The H-measure proposed by Garzon et al. (Proceedings of the Second Annual Genetic Programming Conference, 1997; pp 472-487) is combined in this strategy to optimize the template and map sets obtained. Finally we describe a constructing method that can still produce more sequences by the results obtained in this paper.  相似文献   

16.
17.
Luo Y  Mao X  Peng ZF  Jiang JH  Shen GL  Yu RQ 《Talanta》2008,74(5):1642-1648
A novel, sensitive electrochemical immunoassay in a homogeneously dispersed medium is described herein based on the unique features of agarose beads and the special amplified properties of biometallization. The immunochemical recognition event between human immunoglobulin G (IgG) and goat anti-human IgG antibody is chosen as the model system to demonstrate the proposed immunoassay approach. Avidin-agarose beads rapidly react with the biotinylated goat anti-human IgG antibody to form agarose beads-goat anti-human IgG conjugate (agarose bead-Ab). Agarose bead-Ab, alkaline phosphatase conjugated goat anti-human IgG antibody (ALP-Ab) and the human IgG analyte are mixed to form sandwich-type immunocomplex followed by the addition of the enzymatic silver deposition solution to deposit silver onto the surface of proteins and agarose beads. The silver deposited are dissolved and quantified by anodic stripping voltammetry. The influence of relevant experimental variables was examined and optimized. The logarithm of the anodic stripping peak current depended linearly on the logarithm of the concentration of human IgG in the range from 1 to 1000 ng/ml. A detection limit as low as 0.5 ng/ml human IgG was attained by 3σ-rule. The R.S.D. of the approach is 9.65% for eight times determination of 10 ng/ml human IgG under same conditions. Optical microscope and TEM graphs were also utilized to characterize agarose beads and silver nanoparticles formed.  相似文献   

18.
Yin G  Zhou B  Meng X  Wu A  Pan Y 《Organic letters》2006,8(11):2245-2248
[reaction: see text] A novel and efficient carbon-carbon double-bond formation reaction via coupling of aryl or heteroaryl methyl ketones has been developed. A dimethyl sulfoxide-iodine-CuO system was proven to be efficient for this reaction and afforded the expected products in good yields. A new synthetic strategy, a self-sorting tandem reaction, was involved in this type of reaction and was presented for the first time.  相似文献   

19.
Considering the great significance of microRNAs (miRNAs) in cancer detection and typing, the development of sensitive, specific, quantitative, and low-cost methods for the assay of expression levels of miRNAs is desirable. We describe a highly efficient amplification platform for ultrasensitive analysis of miRNA (taking let-7a miRNA as a model analyte) based on a dumbbell probe-mediated cascade isothermal amplification (DP-CIA) strategy. The method relies on the circularization of dumbbell probe by binding target miRNA, followed by rolling circle amplification (RCA) reaction and an autonomous DNA machine performed by nicking/polymerization/displacement cycles that continuously produces single-stranded G-quadruplex to assemble with hemin to generate a color signal. In terms of the high sensitivity (as low as 1 zmol), wide dynamic range (covering 9 orders of magnitude), good specificity (even single-base difference) and easy operation (one probe and three enzymes), the proposed label-free assay is successfully applied to direct detection of let-7a miRNA in real sample (total RNA extracted from human lung tissue), demonstrating an attractive alternative for miRNA analysis for gene expression profiling and molecular diagnostics, particularly for early cancer diagnosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号