首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we derive two stabilized discontinuous finite element formulations, symmetric and nonsymmetric, for the Stokes equations and the equations of the linear elasticity for almost incompressible materials. These methods are derived via stabilization of a saddle point system where the continuity of the normal and tangential components of the velocity/displacements are imposed in a weak sense via Lagrange multipliers. For both methods, almost all reasonable pair of discontinuous finite element spaces can be used to approximate the velocity and the pressure. Optimal error estimate for the approximation of both the velocity of the symmetric formulation and pressure in L2L2 norm are obtained, as well as one in a mesh-dependent norm for the velocity in both symmetric and nonsymmetric formulations.  相似文献   

2.
This paper deals with the homogenization of the Stokes equations in a cylinder with varying viscosity and with Dirichlet boundary condition. The viscosity is equal to αε⪢1 in a ε-periodic lattice of unidirectional cylinders of radius εrε where rε⪡1, and is equal to 1 elsewhere.In the critical regime defined by limε→0ε2|lnrε|∈]0,+∞[ and limε→0αεrε2∈]0,+∞], the limit problem is a coupled Stokes system satisfied by the limit velocity and the limit of the rescaled velocity in the cylinders, which can be read as a nonlocal law of Brinkman type. Moreover, if limε→0αεrε2=+∞, the limit of the rescaled velocity is equal to 0 and the Brinkman law is derived as in [G. Allaire, Arch. Rational Mech. Anal. 13 (1991) 209–259]. In the other regimes the homogenization leads either to classical Stokes problems or to a zero limit velocity.In the critical case the pressure is not bounded in L2 but only in H−1. Moreover, the pressure of the limit problem is not equal to the weak limit of the pressure in H−1.  相似文献   

3.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

4.
The main subject of this work is to study the concept of very weak solution for the hydrostatic Stokes system with mixed boundary conditions (non-smooth Neumann conditions on the rigid surface and homogeneous Dirichlet conditions elsewhere on the boundary). In the Stokes framework, this concept has been studied by Conca [Rev. Mat. Apl. 10 (1989)] imposing non-smooth Dirichlet boundary conditions.In this paper, we introduce the dual problem that turns out to be a hydrostatic Stokes system with non-free divergence condition. First, we obtain strong regularity for this dual problem (which can be viewed as a generalisation of the regularity results for the hydrostatic Stokes system with free divergence condition obtained by Ziane [Appl. Anal. 58 (1995)]). Afterwards, we prove existence and uniqueness of very weak solution for the (primal) problem.As a consequence of this result, the existence of strong solution for the non-stationary hydrostatic Navier-Stokes equations is proved, weakening the hypothesis over the time derivative of the wind stress tensor imposed by Guillén-González, Masmoudi and Rodríguez-Bellido [Differential Integral Equations 50 (2001)].  相似文献   

5.
6.
The time-periodic Stokes problem in a half-space with fully inhomogeneous right-hand side is investigated. Maximal regularity in a time-periodic Lp setting is established. A method based on Fourier multipliers is employed that leads to a decomposition of the solution into a steady-state and a purely oscillatory part in order to identify the suitable function spaces.  相似文献   

7.
We study the effect of the rugosity of a wall on the solution of the Stokes system complemented with Fourier boundary conditions. We consider the case of small periodic asperities of size ε. We prove that the velocity field, pressure and drag, respectively, converge to the velocity field, pressure and drag of a homogenized Stokes problem, where a different friction coefficient appears. This shows that, contrarily to the case of Dirichlet boundary conditions, rugosity is dominant here. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we study the free boundary problem for 1D compressible Navier-Stokes equations with density-dependent viscosity. We focus on the case where the viscosity coefficient vanishes on vacuum. We prove the global existence and uniqueness for discontinuous solutions to the Navier-Stokes equations when the initial density is a bounded variation function, and give a decay result for the density as t→+∞.  相似文献   

9.
We study a discontinuous Galerkin finite element method (DGFEM) for the Stokes equations with a weak stabilization of the viscous term. We prove that, as the stabilization parameter γ tends to infinity, the solution converges at speed γ?1 to the solution of some stable and well‐known nonconforming finite element methods (NCFEM) for the Stokes equations. In addition, we show that an a posteriori error estimator for the DGFEM‐solution based on the reconstruction of a locally conservative H(div, Ω)‐tensor tends at the same speed to a classical a posteriori error estimator for the NCFEM‐solution. These results can be used to affirm the robustness of the DGFEM‐method and also underline the close relationship between the two approaches. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

10.
In this paper, we consider incompressible viscous fluid flows with slip boundary conditions. We first prove the existence of solutions of the unsteady Navier–Stokes equations in n‐spacial dimensions. Then, we investigate the stability, uniqueness and regularity of solutions in two and three spacial dimensions. In the compactness argument, we construct a special basis fulfilling the incompressibility exactly, which leads to an efficient and convergent spectral method. In particular, we avoid the main difficulty for ensuring the incompressibility of numerical solutions, which occurs in other numerical algorithms. We also derive the vorticity‐stream function form with exact boundary conditions, and establish some results on the existence, stability and uniqueness of its solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The global existence of weak solutions to the compressible Navier–Stokes equations with vacuum attracts many research interests nowadays. For the isentropic gas, the viscosity coefficient depends on density function from physical point of view. When the density function connects to vacuum continuously, the vacuum degeneracy gives some analytic difficulties in proving global existence. In this paper, we consider this case with gravitational force and fixed boundary condition. By giving a series of a priori estimates on the solution coping with the degeneracy of vacuum, gravitational force and boundary effect, we give global existence and uniqueness results similar to the case without force and boundary. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
In this paper, we consider the non‐autonomous Navier–Stokes equations with discontinuous initial data. We prove the global existence of solutions, the decay rate of density, and the equilibrium state of solutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we study the evolutions of the interfaces between the gas and the vacuum for viscous one-dimensional isentropic gas motions. We prove the global existence and uniqueness for discontinuous solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity coefficient. Precisely, the viscosity coefficient μ is proportional to ρθ with 0<θ<1. Specifically, we require that the initial density be piecewise smooth with arbitrarily large jump discontinuities, bounded above and below away from zero, in the interior of gas. We show that the discontinuities in the density persist for all time, and give a decay result for the density as t→+∞.  相似文献   

17.
It is shown how one can get upper bounds for when and are the (viscosity) solutions of


respectively, in with Dirichlet boundary conditions. Similar results are obtained for some other parabolic equations as well, including certain equations in divergence form.

  相似文献   


18.
We present in this note the existence and uniqueness results for the Stokes and Navier–Stokes equations which model the laminar flow of an incompressible fluid inside a two-dimensional channel of periodic sections. The data of the pressure loss coefficient enables us to establish a relation on the pressure and to thus formulate an equivalent problem.  相似文献   

19.
We study the solutions of the Navier–Stokes equations when the initial vorticity is concentrated in small disjoint regions of diameter ?. We prove that they converge, uniformily in ?. for vanishing viscosity to the corresponding solutions of the Euler equations and they are connected to the vortex model.  相似文献   

20.
This paper analyzes a parareal approach based on discontinuous Galerkin (DG) method for the time-dependent Stokes equations. A class of primal discontinuous Galerkin methods, namely variations of interior penalty methods, are adopted for the spatial discretization in the parareal algorithm (we call it parareal DG algorithm). We study three discontinuous Galerkin methods for the time-dependent Stokes equations, and the optimal continuous in time error estimates for the velocities and pressure are derived. Based on these error estimates, the proposed parareal DG algorithm is proved to be unconditionally stable and bounded by the error of discontinuous Galerkin discretization after a finite number of iterations. Finally, some numerical experiments are conducted which confirm our theoretical results, meanwhile, the efficiency of the parareal DG algorithm can be seen through a parallel experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号