首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Tetrahedron: Asymmetry》2005,16(18):3070-3076
The kinetic resolution of some 2-phenylcycloalkanamines was performed by means of aminolysis reactions catalyzed by lipases, with Kazlauskas’ rule being obeyed in all cases. The size of the ring and the stereochemistry of the stereogenic centers of the amines had a strong influence on both the enantiomeric ratio and the reaction rate of these aminolysis processes. Lipase B from Candida antarctica (CAL-B) showed excellent enantioselectivities toward trans-2-phenylcyclohexanamine in a variety of reaction conditions (E >150), whereas lipase A from C. antarctica (CAL-A) was the best catalyst for the acylation of cis-2-phenylcyclohexanamine (E = 34) and trans-2-phenylcyclopropanamine (E = 9).  相似文献   

2.
A computational study of 1-formyl 1,2-ethanediol aminolysis predicts a stepwise mechanism involving syn-2-OH-assisted proton transfer. The syn-oriented 2-OH takes over the catalytic role of the external water or amine molecule previously observed in 2-deoxy ester aminolysis. It provides more favorable, that is, more linear, proton transfer geometry for the rate-limiting transition state resulting in an almost billion-fold rate acceleration of the overall reaction. These findings provide structural basis for explanation of the efficiency of the proton shuttling mechanism and imply double proton transfer catalysis by peptidyl tRNA A76 2'-OH as a possible catalytic strategy used by ribosome.  相似文献   

3.
We present a theoretical study of a mechanism for the hydrolysis of the acyl-enzyme complex formed by a class A beta-lactamase (TEM1) and an antibiotic (penicillanate), as a part of the process of antibiotic's inactivation by this type of enzymes. In the presented mechanism the carboxylate group of a particular residue (Glu166) activates a water molecule, accepting one of its protons, and afterward transfers this proton directly to the acylated serine residue (Ser70). In our study we employed a quantum mechanics (AM1)-molecular mechanics partition scheme (QM/MM) where all the atoms of the system were allowed to relax. For this purpose we used the GRACE procedure in which part of the system is used to define the Hessian matrix while the rest is relaxed at each step of the stationary structures search. By use of this computational scheme, the hydrolysis of the acyl-enzyme is described as a three-step process: The first step corresponds to the proton transfer from the hydrolytic water molecule to the carboxylate group of Glu166 and the subsequent formation of a tetrahedral adduct as a consequence of the attack of this activated water molecule to the carbonyl carbon atom of the beta-lactam. In the second step, the acyl-enzyme bond is broken, obtaining a negatively charged Ser70. In the last step this residue is protonated by means of a direct proton transfer from Glu166. The large mobility of Glu166, a residue that is placed in a Ohms-loop, is essential to facilitate this mechanism. The geometry of the acyl-enzyme complex shows a large distance between Glu166 and Ser70 and thus, if protein coordinates were kept frozen during the reaction path, it would be difficult to get a direct proton transfer between these two residues. This computational study shows how a flexible treatment suggests the feasibility of a mechanism that could have been discounted on the basis of crystallographic positions.  相似文献   

4.
This investigation is devoted to the interaction of Δ2-oxazolin-5-ones, S(—)-α-phenylethy lamine and H2 in the presence of PdCl2 which yields α-phenylethylamides of acylamino acids of the S,S configuration, hydrolysis of the latter compounds resulting in the formation of optically pure amino acids and providing for chiral amine recycling. In DME, double bond saturation and ring opening in Δ2-oxazolin-5-one occur within the catalytic complex sphere without the intermediate formation of saturated oxazolinones or unsaturated amides. In t-BuOH, saturated oxazolinones are formed as intermediates. The catalyst formed in situ was shown to be a zero-valent Pd complex with S(—)-α-phenylethylamine stabilized by substrate coordination. The stereochemical pathway of the reactions has been traced. Reductive aminolysis involves cis-addition of H2, while in reductive methanolysis H2 trarns-addition occurs. The suggested process mechanism accounts for the ratio of aminolysis and racemization rates for saturated oxazolinones and the ratio of diastereomers of α-phenylethylamides of acylamino acids obtained by reacting unsaturated Δ2oxazolin-5-ones with S(—)-α-phenyl-ethylamine. In agreement with the postulated mechanism, the catalyst enantioselectivity is observed at the steps of substrate addition to the catalyst and proton transfer to the α-C-center, provided the process is carried out in DME. In the case of t-BuOH, the enantiodifferentiating action of the catalyst vanishes as a result of racemization, and process stereo selectivity appears at the step of saturated oxazolinone aminolysis with a chiral amine.  相似文献   

5.
The reactions of the title substrate (1) with a series of secondary alicyclic amines are subjected to a kinetic investigation in 44 wt% ethanol‐water, at 25.0°C, ionic strength 0.2 M (KCl). Under amine excess over the substrate, pseudo‐first‐order rate coefficients (kobs) are obtained. Plots of kobs against [NH], where NH is the free amine, are nonlinear upwards, except the reactions of piperidine, which show linear plots. According to the kinetic results and the analysis of products, a reaction scheme is proposed with two tetrahedral intermediates, one zwitterionic (T±) and another anionic (T), with a kinetically significant proton transfer from T± to an amine to yield T (k3 step). By nonlinear least‐squares fitting of an equation derived from the scheme to the experimental points, the rate microcoefficients involved in the reactions are determined. Comparison of the kinetics of the title reactions with the linear kobs vs. [NH] plots found in the same aminolysis of O‐ethyl 4‐nitrophenyl dithiocarbonate (2) in the same solvent shows that the rate coefficient for leaving group expulsion from T± (k2) is larger for 2 due to a stronger push by EtO than PhO. The k3 value is the same for both reactions since both proton transfers are diffusion controlled. Comparison of the title reactions with the same aminolysis of phenyl 4‐nitrophenyl thionocarbonate (3) in water indicates that (i) the k2 value is larger for the aminolysis of 1 due to the less basic nucleofuge involved and the small solvent effect on k2, (ii) the k3 value is smaller for the reactions of 1 due to the more viscous solvent, (iii) the rate coefficient for amine expulsion from T± (k−1) is larger for the aminolysis of 1 than that of 3 due to a solvent effect, and (iv) the value of the rate coefficient for amine attack (k1) is smaller for the aminolysis of 1 in aqueous ethanol, which can be explained by a predominant solvent effect relative to the electron‐withdrawing effect from the nucleofuge. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 839–845, 1999  相似文献   

6.
Activated sulfonyl derivatives, similar to acyl ones, usually undergo aminolysis with amines in water as nucleophilic attack by the amine is preferred to hydrolysis. However, despite being active sulfonyl derivatives, four-membered heterocyclic sulfonamides, beta-sultams, do not undergo aminolysis in aqueous solution but preferentially react to give hydrolysis products only. The rate of the reaction of beta-sultams in buffered solutions of simple primary amines shows a first-order dependence on amine concentrations attributed to general base-catalyzed hydrolysis by the amine. Even N-benzyl-4,4-dimethyl-3-oxo-beta-sultam, which is both a beta-sultam and a beta-lactam, undergoes hydrolysis at the sulfonyl center rather than aminolysis at either the sulfonyl or acyl center. The solvent kinetic isotope effects (SKIE, k(H(2)O)/k(D(2)O)) for the amine-catalyzed hydrolyses are 1.4 and 1.9 for the hydrolysis of N-benzoyl-beta-sultam and N-benzyl-4,4-dimethyl-3-oxo-beta-sultam, respectively, compatible with a general base-catalyzed mechanism. The amine-catalyzed hydrolysis gives a Bronsted beta value of +0.9 for both N-benzoyl beta-sultam and N-benzyl-4,4-dimethyl-3-oxo-beta-sultam, indicating that the general base amine is almost fully protonated in the transition state. A general base-catalyzed mechanism for hydrolysis rather than nucleophilic attack was also deduced for the reaction of N-benzyl-4,4-dimethyl-3-oxo-beta-sultam with carboxylate anions based on a SKIE of 1.7-1.9 and rate constants which fit the Bronsted plot for amines. In contrast to acyl transfer reactions, those for sulfonyl transfer appear to show an inverse reactivity-selectivity relationshipthe most active compounds being the most selective. The lack of reactivity of beta-sultams toward amine nucleophiles appears to be related to the mechanism of ring opening of beta-sultams with a decreased reactivity toward amines relative to hydroxide ion, probably related to the expulsion of the relatively poor leaving group amide anion.  相似文献   

7.
N-aroyl beta-lactams are imides with exo- and endocyclic acyl centres which react with amines in aqueous solution to give the ring opened beta-lactam aminolysis product. Unlike the strongly base catalysed aminolysis of beta-lactam antiobiotics, such as penicillins and cephaloridines, the rate law for the aminolysis of N-aroyl beta-lactams is dominated by a term with a first-order dependence on amine concentration in its free base form, indicative of an uncatalysed aminolysis reaction. The second-order rate constants for this uncatalysed aminolysis of N-p-methoxybenzoyl beta-lactam with a series of substituted amines generates a Br?nsted betanuc value of +0.90. This is indicative of a large development of positive effective charge on the amine nucleophile in the transition state. Similarly, the rate constants for the reaction of 2-cyanoethylamine with substituted N-aroyl beta-lactams gives a Br?nsted betalg value of -1.03 for different amide leaving groups and is indicative of considerable change in effective charge on the leaving group in the transition state. These observations are compatible with either a late transition state for the formation of the tetrahedral intermediate of a stepwise mechanism or a concerted mechanism with simultaneous bond formation and fission in which the amide leaving group is expelled as an anion. Amide anion expulsion is also indicated by an insignificant solvent kinetic isotope effect, kH2ORNH2/kD2ORNH2, of 1.01 for the aminolysis of N-benzoyl beta-lactam with 2-methoxyethylamine. The Br?nsted betalg value decreases from -1.03 to -0.71 as the amine nucleophile is changed from 2-cyanoethylamine to propylamine. The Br?nsted betanuc value is more invariant although it changes from +0.90 to +0.85 on changing the amide leaving group from p-methoxy to p-chloro substituted. The sensitivity of the Br?nsted betanuc and betalg values to the nucleofugality of the amide leaving group and the nucleophilicity of the amine nucleophiles, respectively, indicate coupled bond formation and bond fission processes.  相似文献   

8.
The reactions of the title thionocarbonates (6, 7, and 8, respectively) with a series of secondary alicyclic amines are subjected to a kinetic investigation in 44 wt % ethanol-water, 25.0 degrees C, ionic strength 0.2 M (KCl). Under excess amine, pseudo-first-order rate coefficients (k(obsd)) are obtained for all reactions. Reactions of substrates 6 and 7 with piperidine and of thionocarbonate 8 with the same amine and piperazine, 1-(2-hydroxyethyl)piperazine, and morpholine show linear k(obsd) vs [amine] plots, with slopes (k(1)) independent of pH. On the other hand, these plots are nonlinear upward for the reactions of substrates 6 and 7 with all the amines, except piperidine, and also for the reactions of compound 8 with 1-formylpiperazine and piperazinium ion. For all these reactions a mechanistic scheme is proposed with the formation of a zwitterionic tetrahedral intermediate (T(+/-)), which can transfer a proton to an amine to give an anionic intermediate (T(-)). Rate and equilibrium microcoefficients of this scheme, k(1), k(-)(1), K(1) (= k(1)/k(-)(1)), and k(2), are obtained by fitting the nonlinear plots through an equation derived from the scheme. The Br?nsted-type plots for k(1) are linear with slopes beta(1) = 0.19, 0.21, and 0.26 for the aminolysis of 6, 7, and 8, respectively. This is consistent with the hypothesis that the formation of T(+/-) (k(1) step) is the rate-determining step. The k(1) values for these reactions follow the sequence 8 > 7 > 6, consistent with the sequence of the electron-withdrawing effects from the substituents on the "nonleaving" group of the substrates. The k(1) values for the aminolysis of 6, 7, and 8 are smaller than those for the same aminolysis of 3-methoxyphenyl, 3-chlorophenyl, and 4-cyanophenyl 4-nitrophenyl thionocarbonates (2, 3, and 4, respectively). The k(2) values (expulsion of the nucleofuge from T(+/-)) increase as the electron withdrawal from the nonleaving group increases. These values are smaller for the aminolysis of 6, 7, and 8 compared to those for the same aminolysis of 2, 3, and 4, respectively.  相似文献   

9.
A library of pinane-based 1,3-diaminoalcohols and 5-aminomethyloxazolidin-2-ones was developed from commercially available (1R)-(?)-myrtenol which was transformed to N-trichloroacetyl protected allyl amine via Overmann rearrangement followed by stereoselective epoxidation with mCPBA resulting in key intermedier epoxy-amine. In order to obtain the diaminoalcohol moiety, aminolysis and azidolysis of the oxirane ring was performed. The cleavage of the oxirane ring proceeded regioselectively, affording N-trichloroacetyl protected 1,3-diaminoalcohols and oxazolidin-2-ones, which were obtained also via a thermal cyclisation. Since N deprotection of diaminoalcohols was unsuccessful under varied conditions, the protecting group was changed and Boc-protected analogues were synthesised. In this case, removal of the Boc protecting group was successful resulting in the planned diamino alcohols. An unexpected extreme δ Meα-9 value (0.11 ppm) was measured for the dibenzylaminomethyl-substituted oxazolidine-2-one, and the stereostructure was refined by means of DFT geometry optimization. The obtained potential catalysts were applied in the test reaction of benzaldehyde and diethylzinc with low to moderate enantioselectivities (up to 74% ee).  相似文献   

10.
Because of the importance of developing stereoselective syntheses for single enantiomers, a selected panel of racemic biologically active 1-aryl- and 1-heteroarylpropan-2-amines has been prepared, followed by a study of their behavior in enzymatic kinetic resolution (KR) processes. For this purpose, lipase B from Candida antarctica (CAL-B) proved to be an ideal biocatalyst allowing the preparation of the corresponding enantioenriched (R)-amides and (S)-amines by aminolysis reactions. Likewise, dynamic kinetic resolutions (DKR) have been successfully achieved combining the use of CAL-B and Shvo's catalyst. This research constitutes the first example of a lipase-catalyzed DKR process of β-substituted isopropylamines.  相似文献   

11.
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.  相似文献   

12.
The aminolysis of 6-chloropyrimidine and 2-amino-6-chloropyrimidine has been examined by using density functional theory. Relative to the aminolysis of 6-chloropyrimidine, the addition of an electron-donating NH(2) group to C(2) increases the barrier to aminolysis, indicating that the third hydrogen bond does not play a catalytic role but introduces additional rigidity into the system. However, the computations suggest that there is an interesting correlation between the barrier to aminolysis and the proton affinity of the species that interacts with the incoming NH(3). To extend the range of proton affinities, the aminolysis of 6-chloropyrimidine was examined by using fluoro, imine, and thioketo derivatives of the uracil-derived bases. The proton affinity of the moiety that hydrogen bonds with NH(3) is decreased by fluoro substitution, and thus the aminolysis barriers are increased. Similarly, imine substitution enhances the PA of the moiety, which is reflected in a decrease in the aminolysis barriers. The same correlation exists for the thioketo-derived bases, whose PAs are intermediate between the fluoro and imine derivatives. Thus, the aminolysis of 6-chloropryimidine and 2-amino-6-chloropyrimidine demonstrates the importance of a well-chosen proton acceptor and the catalytic possibilities associated with the formation of multiple hydrogen bonds.  相似文献   

13.
Using cinchona alkaloid-derived primary amine as catalyst and benzoic acid as co-catalyst, Michael-type addition reactions between enolizable carbonyl compounds and nitroalkenes have been extensively studied; however, our understanding of the mechanism is far from complete. In this paper, a theoretical study is presented for the Michael addition reaction between trans-1-nitro-2-phenylethylene and 2-methylpropionaldehyde catalyzed by 9-epi-QDA and benzoic acid. By performing DFT and ab initio calculations, we have identified a detailed mechanism. The calculations indicated that four continuous steps are involved in the overall reaction: (1) the formation of an iminium intermediate, (2) an addition reaction between the iminium and trans-1-nitro-2-phenylethylene, (3) the proton transfer process, and (4) hydrolysis and regeneration of the catalyst. The rate-determining step is the second proton transfer from the amine group to β-carbon of trans-1-nitro-2-phenylethylene, and the enantioselectivity is also controlled by this step. The calculated results provide a general model that explains the mechanism and enantioselectivity of the title reaction.  相似文献   

14.
In order to synthesize N-(3-azido-1-phenylpropyl)-2-hydroxyiminoacetamide, a key compound for the preparation of acetylcholinesterase (AChE) reactivators of the N-substituted 2-hydroxyiminoacetamide type, it was necessary to develop a method for forming an amide bond between an ethyl glyoxylate oxime and an amine. Using Candida antarctica lipase B (CAL-B) in a cascade enzyme-BOP catalyzed reaction, the efficient synthesis of the target hydroxyiminoacetamide was achieved.  相似文献   

15.
The kinetic patterns of the reaction between dimethyl carbonate and anilines in the presence of a potassium methylate as a catalyst were studied. The mechanism of aminolysis was clarified, which includes the detachment of the proton from the amino group of aniline and the subsequent attack of the resulting anion on the carbonyl group of dimethyl carbonate. It is shown that when the reaction occurs in the dimethyl carbonate-methanol 3:1 system, the process can be described as an irreversible first-order reaction in the aniline though the target reaction is complicated by side interaction between potassium methylate and dimethyl carbonate. The rate constants of the target reaction with substituted anilines and of the side reaction in the temperature range of 70-90°C were determined. It is shown that the influence of the substituent on the reaction rate is described by the Hammett equation, with the constant of the reaction series being positive and the best correlation being achieved for σ-scale. The results obtained are consistent with the proposed mechanism of the reaction and are explained by the facilitation of the aniline deprotonation with increasing acceptor properties of the substituent. Effective activation energies for the reaction of various anilines with dimethyl carbonate are found.  相似文献   

16.
The present study comprehensively explores alternative mechanistic pathways for intramolecular hydroamination of 2,2-dimethyl-4-penten-1-amine (1) by [{To(M)}MgMe] (To(M)=tris(4,4-dimethyl-2-oxazolinyl)phenylborate) (2) with the aid of density functional theory (DFT) calculations. A single-step amidoalkene → cycloamine conversion through a concerted proton transfer associated with N-C ring closure has been explored as one possible mechanism; its key features have been described. This non-insertive pathway evolves via a six-centre TS structure featuring activation of the olefin unit towards nucleophilic amido attack outside the immediate vicinity of the metal centre by amino proton delivery and describes a viable mechanistic variant for alkaline-earth metal-mediated aminoalkene hydroamination. However, herein is presented sound evidence for the operation of the Mg-N amido σ-bond insertive mechanism, its turnover-limiting activation barrier is found to be 5.0 kcal mol(-1) lower than for the non-insertive mechanism, for the cyclohydroamination of 2,2-disubstituted 4-aminoalkenes by a [{To(M)}Mg-NHR] catalyst. The operative mechanism involves rapid equilibria of the {To(M)}Mg-amidoalkene resting state 3 with its amine adduct, easily accessible and thermodynamically disfavoured, hence reversible, 1,2-olefin insertion into the Mg-N amido σ-bond with ring closure at 3, linked to turnover-limiting Mg-C azacycle tether aminolysis by an adduct substrate molecule, followed by facile cycloamine liberation to regenerate the active catalyst species 3. The following aspects are in support of this scenario: 1) the derived rate law is consistent with the experimentally obtained empirical rate law; 2) the reasonable agreement between the computationally estimated and the observed value of the primary KIE; 3) the assessed effective activation barrier for turnover-limiting aminolysis matches empirically determined Eyring parameters remarkably well; and 4) the observed resistance of isolated 3 to undergo amidoalkene cycloamine/cycloamido transformation until further quantities of substrate is added is consistently explained. The herein unveiled insights into the structure-reactivity relationships will undoubtedly govern the rational design of alkaline-earth metal-based catalysts and likely facilitate further advances in the area.  相似文献   

17.
The additive Pummerer reaction of several heteroaromatic sulfilimines has been investigated. The overall process involves the reaction of the sulfilimine with TFAA to produce a transient N-tosyl-N-trifluoroacetyl sulfonium ion. Nucleophilic attack at the adjacent vinyl carbon results in the ejection of the sulfonamide group and the resulting thionium ion loses a proton to give the observed product.  相似文献   

18.
Polyanionic cellulose carbamates were synthesized by rapid and efficient homogeneous aminolysis of cellulose carbonate half-esters in an ionic liquid/DMF medium. Cellulose bis-2,3-O-(3,5-dimethylphenyl carbamate), as a model compound, reacted with different chloroformates to cellulose carbonates. These intermediates were subjected to aminolysis, for which both the reactivity of different chloroformates towards C6-OH and the reactivity/suitability of the respective carbonate half-ester in the aminolysis were comprehensively studied. Phenyl chloroformate and 4-chlorophenyl chloroformate readily reacted with C6-OH of the model cellulose derivative, while 4-nitrophenyl chloroformate did not. The intermediate 4-chlorophenyl carbonate derivative with the highest DS (1.05) was then used to evaluate different aminolysis pathways, applying three different amines (propargyl amine, β-alanine, and taurine) as reactants. The latter two zwitterionic compounds are only sparingly soluble in pure DMF as the typical reaction medium for aminolysis; therefore, several alternative procedures were suggested, carefully evaluated, and critically compared. Solubility problems with β-alanine and taurine were overcome by the binary solvent system DMF/[EMIM]OAc (1:1, v/v), which was shown to be a promising medium for rapid and efficient homogeneous aminolysis and for the preparation of the corresponding cellulose carbamate derivatives or other compounds that are not accessible by conventional isocyanate chemistry. The zwitterionic cellulose carbamate derivatives presented in this work could be promising chiral cation exchangers for HPLC enantiomer separations.  相似文献   

19.
The effects of four cyclodextrins (alpha-CD, beta-CD, hydroxypropyl-beta-CD, and gamma-CD) on the aminolysis of p-nitrophenyl alkanoates (acetate to heptanoate) by primary amines (n-propyl to n-octyl, isobutyl, isopentyl, cyclopentyl, cyclohexyl, benzyl) in aqueous solution have been investigated. Rate constants for amine attack on the free and CD-bound esters (k(N) and k(cN)) have ratios (k(cN)/k(N)) varying from 0.08 (retardation) to 180 (catalysis). For the kinetically equivalent process of free ester reacting with CD-bound amine (k(Nc)), the ratios k(Nc)/k(N) vary from 0.2 to 28. Either way, there is evidence of catalysis in some cases and retardation in others. Changes in reactivity parameters with structure indicate more than one mode of transition state binding to the CDs. Short esters react with short alkylamines by attack of free amine on the ester bound by its aryl group, but for longer amines, free ester reacts with CD-bound amine. Reaction of long esters with long amines, which is catalyzed by beta-CD and gamma-CD, involves inclusion of the alkylamino group and possibly the ester acyl group. The larger cavity of gamma-CD may allow the inclusion of the ester aryl group, as well as the alkylamino group, in the transition state. Reaction between an ester bound to the CD by its acyl group and free amine appears not to be important.  相似文献   

20.
The present mechanistic study comprehensively explores alternative scenarios for activation of the amine-linked allene C=C linkage toward nucleophilic amido attack in the intramolecular hydroamination of a prototypical 1,3-disubstituted aminoallene by a well-characterised samarocene-amido catalyst. Firstly, the non-insertive mechanism by Scott featuring C-N ring closure with concomitant amino proton delivery onto the allene unit has been explored and its key features have been defined. This scenario has been compared and contrasted with the classical stepwise Ln-N σ-bond insertive mechanism that involves rapid substrate association/dissociation equilibria for the Ln-amido-substrate resting state and also for Ln-azacycle intermediates, facile and reversible exocyclic ring closure through migratory allene insertion into the Ln-N amido σ-bond, linked to turnover-limiting Ln-C azacycle aminolysis. The Ln-N σ-bond insertive mechanism prevails for the studied intramolecular hydroamination of 4,5-heptadien-1-ylamine 1 by [Cp*(2)Sm-CH(TMS)(2)] starting material 2. The following aspects are in support of this mechanism: 1) the derived rate law is consistent with the observed empirical rate law; 2) the assessed effective barrier for turnover-limiting aminolysis does agree reasonably well with empirically determined Eyring parameters; 3) the ring-tether double bond selectivity is consistently elucidated. On the other hand, this study reveals that the non-insertive mechanism, which features a prohibitively large barrier, is unachievable. Spatial demands around the lanthanide centre effect the two mechanisms differently. A sufficiently accessible lanthanide is a crucial requirement of the Ln-N σ-bond insertive mechanism and enhanced encumbrance renders the cyclisation step less accessible kinetically. This contrasts with the non-insertive mechanism, where greater lanthanide protection has a rather modest influence. The present study indicates that the non-insertive mechanism would prevail if the lanthanide centre were to be protected effectively against C=C bond approach, whilst ensuring a high polarity of the Ln-N σ-bond together with a sufficiently acidic amino proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号