首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Investigation of the crystallization process in 2 nm CdSe quantum dots   总被引:1,自引:0,他引:1  
Investigation of the growth of CdSe nanocrystals ( approximately 160 atoms) to the uniquely stable size of 2 nm allows the monitoring of the crystallization process in semiconductor quantum dots. By using a combination of optical techniques, high-resolution transmission electron microscopy (HRTEM), and powder X-ray diffractometry (XRD), new phenomena were explored during the CdSe nanocrystal growth process, which involved significant morphological reconstruction and crystallization of the initially formed amorphous nanoparticles. During the crystallization, the absorption onset of the CdSe quantum dots blue shifted toward higher energies at 3 eV (414 nm), while the photoluminescence red shifted to lower energies. Furthermore, an apparent increasing Stokes shift was observed during the formation of small CdSe nanoparticles. On the other hand, the photoluminescence excitation spectra showed constant features over the reaction time. Additionally, results from HRTEM and XRD studies show that the CdSe nanoparticles were amorphous at early reaction stages and became better crystallized after longer reaction times, while the particle size remained the same during the crystallization process. These observations demonstrate the important role of the surface on the optical properties of small CdSe quantum dots and facilitated the spectroscopic monitoring of the crystallization process in quantum dots.  相似文献   

2.
Nearly monodisperse CdSe quantum dots (QDs) have been prepared by a soft solution approach using air-stable reagents in different organic solvents. This scheme is a supplement to the conventional thermal decomposition of organometallic compounds at higher temperatures. CdSe nanocrystals of different sizes could be obtained by simply changing the solvent. This method is reproducible and simple and thus can be readily scaled up for industrial production. The reaction process was monitored by the temporal evolution of the UV-Vis absorption and room temperature photoluminensce spectra. The structures of the CdSe quantum dots were determined by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The phase-transfer of oleic acid-stabilized CdSe nanocrystals into PBS buffer solutions was also studied for their potentials in biological applications. __________ Translated from Journal of Shanghai Jiaotong University, 2005, 39(1) (in Chinese)  相似文献   

3.
高质量CdSe量子点的水相制备与表征   总被引:3,自引:0,他引:3  
以巯基丁二酸为稳定剂, 亚硒酸钠为硒源, 制备了高质量水溶性CdSe量子点. 研究了反应时间、 镉与硒的摩尔比及镉与巯基丁二酸的摩尔比等实验条件对CdSe量子点光谱性能的影响. 分别用紫外-可见光谱、 荧光光谱、 X射线粉末衍射和透射电子显微镜等对量子点进行表征. 结果表明, 采用这种方法制得的CdSe量子点为立方晶型, 量子点的荧光发射峰在518~562 nm范围内连续可调, 并且发射峰的半峰宽始终保持在35 nm左右, 荧光量子产率可达21%.  相似文献   

4.
We report on the recently developed method for the synthesis, optical, and structural properties of CdSe and CdTe nanocrystals. They were formed in aqueous solutions at moderate temperatures by a wet chemical route in the presence of thiol molecules as effective stabilizing agents. The size-selective precipitation technique was applied for the post-preparative nanoparticle fractionation into a series of CdSe and CdTe nanocrystals with extremely narrow size distributions exhibiting mean cluster sizes in the range of 2 to 4 nm. The nature of stabilizing agent (mercaptoalcohols and mercaptoacids) had an important influence on the particle size and determines largely the photoluminescence properties. The nanocrystals were characterized by means of UV-vis absorption and photoluminescence spectroscopy, X-ray diffraction, and high resolution transmission electron microscopy (HRTEM).  相似文献   

5.
脂质体包覆CdSe/ZnSe核-壳量子点   总被引:1,自引:0,他引:1  
本文提出了一种利用脂质体包覆量子点的方法。这种脂质体包覆的方法可以使量子点溶于水。被脂质体包覆的CdSe/ZnSe量子点仍具有很强的荧光,其荧光强度与未包覆的CdSe/ZnSe量子点处于同一数量级且具有很好的荧光稳定性。这种脂质体包覆的量子点有很好的生物相容性,利用它为荧光标记物,制备了鼠单克隆抗体CD95的免疫检测传感器。  相似文献   

6.
在有机相体系中利用ZnSe前驱体纳米晶制备过程中的富Se环境,以引入Cd2+的方式在相对温和的环境下通过控制Cd2+离子的加入量及调节反应时间,成功制备了ZnSe/CdSe核-壳复合结构纳米晶.利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见吸收光谱(UV-vis)和荧光光谱(FL)对其结构形貌以及光学性质进行表征和分析的结果表明,CdSe以外延生长的方式包覆在ZnSe纳米晶表面从而形成具有良好结晶性的核-壳复合结构,其荧光发射始终保持良好单色性,同时实现了在500~620nm可见光范围内的连续可调.  相似文献   

7.
In recent years, continuous‐flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size‐controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size‐tunable continuous‐flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1‐octadecene as solvent. Exploiting selenium dioxide as selenium source and 1‐octadecene as solvent allows execution of the complete process in open air without any requirement for air‐free manipulations using a glove box or Schlenk line. Continuous‐flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3–6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11–28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small‐angle X‐ray scattering, and high‐resolution transmission electron microscopy. Finally, the potential of this protocol for large‐scale manufacturing was evaluated and by operating the continuous‐flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.  相似文献   

8.
以柠檬酸三钠为稳定剂在水溶液中合成了水溶性CdSe量子点,用X射线粉末衍射、透射电镜、紫外-可见吸收光谱和荧光发射光谱对CdSe量子点的结构、形貌及其荧光性质进行了表征.结果表明合成的CdSe量子点为立方闪锌矿结构,呈球形,分散性良好,平均尺寸约为2.6nm,具有窄且对称的荧光发射光谱,半峰宽为45nm.  相似文献   

9.
油胺/油酸稳定的CdSe量子点的绿色合成   总被引:1,自引:0,他引:1  
以液体石蜡为高温反应溶剂,油酸和油胺为混合稳定剂,利用高温热解法一步合成了高质量的CdSe量子点。通过紫外-可见吸收光谱、荧光发射光谱、红外光谱和X射线衍射等手段对量子点的光学性质和结构进行了表征。结果表明,油胺/油酸混合表面活性剂稳定的量子点吸收光谱峰形更尖锐,荧光发射光谱半峰宽更窄。反应温度和反应时间均对量子点的生长过程和光学性质有明显影响,220℃下反应15 min,荧光量子产率可达26%。得到的CdSe量子点为立方晶型,表面同时包覆了油酸和油胺,具有良好的光稳定性。该方法无需使用三烷基膦,价廉环保,且合成的CdSe量子点性质稳定、性能优越,有利于其在分析检测领域中的应用。  相似文献   

10.
Synthesis and Characterization of CdSe Nanocrystals Capped by CdS   总被引:1,自引:0,他引:1  
CdSe semiconductor nanocrystals capped by CdS were synthesized in the aqueous solution with 2-mercaptoethanol as the stabilizer. The CdS capping with a higher band-gap than that of the core crystallite has successfully eliminated the surface traps. Optical absorption and fluorescence emission spectra were used to probe the effect of CdS passivation on the electronic structure of the nanocrystals. The composite CdSe/CdS nanocrystals exhibit strong, narrow(FWHM≤40 nm) and stable band-edge photoluminescence. X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were used to analyze the composite nanocrystals and determine their average size, size distribution, shape, internal structure and elemental composition.  相似文献   

11.
Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.  相似文献   

12.
The composition and structure of inorganic shells grown over CdSe semiconductor nanocrystal dots and rods were optimized to yield enhanced photoluminescence properties after ligand exchange followed by coating with phytochelatin-related peptides. We show that, in addition to the peptides imparting superior colloidal properties and providing biofunctionality in a single-step reaction, the improved shells and pretreatment with UV irradiation resulted in high quantum yields for the nanocrystals in water. Moreover, peptide coating caused a noticeable red-shift in the absorption and emission spectra for one of the tested shells, suggesting that exciton-molecular orbital (X-MO) coupling might take place in these hybrid inorganic-organic composite materials.  相似文献   

13.
Nanocomposites based on nanocrystalline ZnO and CdSe and InP nanocrystals (quantum dots) have been synthesized by chemical precipitation and high-temperature colloidal synthesis. The microstructure parameters of the oxide matrix and the size of the CdSe and InP nanocrystals have been determined. A correlation was established between the spectral dependence of the photoconductivity of nanocomposites and the optical absorption spectra of quantum dots. The influence of CdSe and InP quantum dots on the interaction of ZnO with NO2 under visible light irradiation has been studied. It has been shown that the synthesized nanocomposites can be used to detect NO2 under illumination with green light without additional thermal heating.  相似文献   

14.
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L ‐tryptophan (L ‐Trp) and L ‐arginine (L ‐Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid‐modified β‐cyclodextrin (CD)‐coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid‐modified β‐CD‐coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid‐modified β‐CD‐coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule‐coated QDs could be used as a potential fluorescent probe.  相似文献   

15.
Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.  相似文献   

16.
The formation of narrow size dispersed and nanometer size aggregates (clusters) of cadmium selenide (CdSe) quantum dots (QDs) and their temperature-sensitive photoluminescence (PL) spectral properties close to room temperature (298 K) are discussed. CdSe QDs formed stable clusters with an average diameter of approximately 27 nm in the absence of coordinating solvents. Using transmission electron microscopy (TEM) imaging, we identified the association of individual QDs with 2-5 nm diameters into clusters of uniform size. A suspension of these clusters in different solvents exhibited reversible PL intensity changes and PL spectral shifts which were correlated with temperature. Although the PL intensity of CdSe QDs encapsulated in host matrixes and the solid state showed a response to temperature under cryogenic conditions, the current work identified for the first time QD clusters showing temperature-sensitive PL intensity variations and spectral shifts at moderate temperatures above room temperature. Temperature-sensitive reversible PL changes of clusters are discussed with respect to reversible thermal trapping of electrons at inter-QD interfaces and dipole-dipole interactions in clusters. Reversible luminescence intensity variations and spectral shifts of QD clusters show the potential for developing sensors based on QD nanoscale assemblies.  相似文献   

17.
The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K−1. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.  相似文献   

18.
Polydimethylaminoethyl methacrylate (PDMAEMA) was used as a multidentate ligand to modify the surface of CdSe/ZnS core-shell colloidal quantum dots in toluene with trioctylphosphine oxide (TOPO) as the surface ligand. Adsorption of PDMAEMA was accompanied by release of TOPO. The process is free of agglomeration, and the modified nanocrystals become soluble in methanol. The photoluminescence properties are well-preserved in either toluene or methanol.  相似文献   

19.
A novel selenium source was developed to synthesize the size-controlled CdSe nanocrystals with relatively narrow size distribution successfully in a two-phase thermal approach. A highly reactive and aqueous soluble selenium source was provided by the reduction of selenite, and in this route the size of the nanocrystals can be adjusted by the reaction temperature and time. The size, crystalline structure and optical characteristics of these nanocrystals were investigated by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, UV–vis spectroscopy, and photoluminescence spectroscopy. The influence factors for this approach were also discussed.  相似文献   

20.
We reported a facile route for overcoating CdS and ZnS shells around colloidal CdSe core nanocrystals. To synthesize such double shelled core/shell nanocrystals, first, CdSe core nanocrystals were prepared in a much “greener” and cheap route, which did not involve the use of hazardous and expensive trioctylphosphine. Then, a low-cost and labor-saving route was adopted for the CdS and ZnS shell growth with the use of thermal decomposition of commercial available air stable single-source precursors cadmium diethyldithio-carbamate and zinc diethyldithiocarbamate in a non-coordinating solvent at intermediate temperatures. Powder X-ray diffraction patterns and transmission electron microscopy images confirm the epitaxial growth of the shell in the core/shell nanocrystals. The photoluminescence quantum yield of the resulting CdSe/CdS/ZnS core/shell nanocrystals can be as high as 90% in organic media and up to 60% after phase transfer into aqueous media. By varying the size of CdSe cores, the emission wavelength of the obtained core/shell nanostructures can span from 554 to 636 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号