首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the so-called delayed loss of stability phenomenon for singularly perturbed systems of differential equations in case that the associated autonomous system with a scalar parameter undergoes the Hopf bifurcation at the zero equilibrium point. It is assumed that the linearization of the associated system is independent of the parameter and the next terms in the expansion of the right-hand parts at zero are positive homogeneous of order α>1. Simple formulas are presented to estimate the asymptotic delay for the delayed loss of stability phenomenon. More precisely, we suggest sufficient conditions which ensure that zeros of a simple function ψ defined by the positive homogeneous nonlinear terms are the Hopf bifurcation points of the associated system, the sign of ψ at other points determines stability of the zero equilibrium, and the asymptotic delay equals the distance between the bifurcation point and a zero of some primitive of ψ.  相似文献   

2.
In this paper, the dynamics behavior of a delayed viral infection model with logistic growth and immune impairment is studied. It is shown that there exist three equilibria. By analyzing the characteristic equations, the local stability of the infection-free equilibrium and the immune-exhausted equilibrium of the model are established. By using suitable Lyapunov functional and LaSalle invariant principle, it is proved that the two equilibria are globally asymptotically stable. In the following, the stability of the positive equilibrium is investigated. Furthermore, we investigate the existence of Hopf bifurcation by using a delay as a bifurcation parameter. Finally, numerical simulations are carried out to explain the mathematical conclusions.  相似文献   

3.
This paper is concerned with the exponential stability of a class of delayed neural networks described by nonlinear delay differential equations of the neutral type. In terms of a linear matrix inequality (LMI), a sufficient condition guaranteeing the existence, uniqueness and global exponential stability of an equilibrium point of such a kind of delayed neural networks is proposed. This condition is dependent on the size of the time delay, which is usually less conservative than delay-independent ones. The proposed LMI condition can be checked easily by recently developed algorithms solving LMIs. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.  相似文献   

4.
A reaction-diffusion model with logistic type growth, nonlocal delay effect and Dirichlet boundary condition is considered, and combined effect of the time delay and nonlocal spatial dispersal provides a more realistic way of modeling the complex spatiotemporal behavior. The stability of the positive spatially nonhomogeneous positive equilibrium and associated Hopf bifurcation are investigated for the case of near equilibrium bifurcation point and the case of spatially homogeneous dispersal kernel.  相似文献   

5.
The present paper is concerned with a diffusive population model of Logistic type with an instantaneous density-dependent term and two delayed density-dependent terms and subject to the zero-Dirichlet boundary condition. By regarding the delay as the bifurcation parameter and analyzing in detail the associated eigenvalue problem, the local asymptotic stability and the existence of Hopf bifurcation for the sufficiently small positive steady state solution are shown. It is found that under the suitable condition, the positive steady state solution of the model will become ultimately unstable after a single stability switch (or change) at a certain critical value of delay through a Hopf bifurcation. However, under the other condition, the positive steady state solution of the model will become ultimately unstable after multiple stability switches at some certain critical values of delay through Hopf bifurcations. In addition, the direction of the above Hopf bifurcations and the stability of the bifurcating periodic solutions are analyzed by means of the center manifold theory and normal form method for partial functional differential equations. Finally, in order to illustrate the correction of the obtained theoretical results, some numerical simulations are also carried out.  相似文献   

6.
In this paper, a SEIR epidemic model with nonlinear incidence rate and time delay is investigated in three cases. The local stability of an endemic equilibrium and a disease-free equilibrium are discussed using stability theory of delay differential equations. The conditions that guarantee the asymptotic stability of corresponding steady-states are investigated. The results show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation when using the time delay as a bifurcation parameter. Applying the normal form theory and center manifold argument, the explicit formulas determining the properties of the bifurcating periodic solution are derived. In addition, the effect of the inhibitory effect on the properties of the bifurcating periodic solutions is studied. Numerical simulations are provided in order to illustrate the theoretical results and to gain further insight into the behaviors of delayed systems.  相似文献   

7.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

8.
非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性   总被引:2,自引:0,他引:2  
王文强  黄山  李寿佛 《计算数学》2007,29(2):217-224
本文首先将数值方法的均方稳定性的概念MS-稳定与GMS-稳定从线性试验方程推广到一般非线性的情形,然后针对一维情形下的非线性随机延迟微分方程初值问题,证明了如果问题本身满足零解是均方渐近稳定的充分条件,那么当漂移项满足一定的限制条件时,Euler- Maruyama方法是MS-稳定的与带线性插值的Euler-Maruyama方法是GMS-稳定的理论结果.  相似文献   

9.
Two models of a density dependent predator-prey system with Beddington-DeAngelis functional response are systematically considered. One includes the time delay in the functional response and the other does not. The explorations involve the permanence, local asymptotic stability and global asymptotic stability of the positive equilibrium for the models by using stability theory of differential equations and Lyapunov functions. For the permanence, the density dependence for predators is shown to give some negative effect for the two models. Further the permanence implies the local asymptotic stability for a positive equilibrium point of the model without delay. Also the global asymptotic stability condition, which can be easily checked for the model is obtained. For the model with time delay, local and global asymptotic stability conditions are obtained.  相似文献   

10.
In this paper, a delayed Susceptible‐Exposed‐Infectious‐Susceptible (SEIS) infectious disease model with logistic growth and saturation incidence is investigated, where the time delay describes the latent period of the disease. By analyzing corresponding characteristic equations, the local stability of a disease‐free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using the persistence theory for infinite dimensional dynamic systems, it is proved that if the basic reproduction number is greater than unity, the system is permanent. By means of suitable Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the disease‐free equilibrium and the endemic equilibrium, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A delayed Lotka–Volterra two-species predator–prey system with discrete hunting delay and distributed maturation delay for the predator population described by an integral with a strong delay kernel is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that under suitable conditions on the parameters the positive equilibrium is asymptotically stable when the hunting delay is less than a certain critical value and unstable when the hunting delay is greater than this critical value. Meanwhile, according to the Hopf bifurcation theorem for functional differential equations (FDEs), we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the hunting delay crosses through a sequence of critical values. In particular, by applying the normal form theory and the center manifold reduction for FDEs, an explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions occurring through Hopf bifurcations is given. Finally, to verify our theoretical predictions, some numerical simulations are also included at the end of this paper.  相似文献   

12.
Since the celebrated Mackey–Glass model of respiratory dynamics was introduced in 1977, many results on its qualitative behavior have been obtained, including oscillation, stability and chaos. The paper reviews some known properties and presents new results for more general models: equations with time-dependent parameters, several delays, a positive periodic equilibrium and distributed delays. The problems considered in the paper involve existence, positivity and permanence of solutions, oscillation and global asymptotic stability. In addition, some general approaches to the study of nonlinear nonautonomous scalar delay equations are outlined. The paper generalizes and unifies existing results and provides an outlook on further studies.  相似文献   

13.
A class of scalar nonlinear difference equations with delay is considered. Sufficient conditions for the global asymptotic stability of a unique equilibrium are given. Applications in economics and other fields lead to consideration of associated optimal control problems. An optimal control problem of maximizing a consumption functional is stated. The existence of optimal solutions is established and their stability (the turnpike property) is proved.  相似文献   

14.
Based on kinetic formulation for scalar conservation laws, we present implicit kinetic schemes. For time stepping these schemes require resolution of linear systems of algebraic equations. The scheme is conservative at steady states. We prove that if time marching procedure converges to some steady state solution, then the implicit kinetic scheme converges to some entropy steady state solution. We give sufficient condition of the convergence of time marching procedure. For scalar conservation laws with a stiff source term we construct a stiff numerical scheme with discontinuous artificial viscosity coefficients that ensure the scheme to be equilibrium conserving. We couple the developed implicit approach with the stiff space discretization, thus providing improved stability and equilibrium conservation property in the resulting scheme. Numerical results demonstrate high computational capabilities (stability for large CFL numbers, fast convergence, accuracy) of the developed implicit approach. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 26–43, 2002  相似文献   

15.
In the present paper, we consider the stability problem for delay functional-differential equations with finite delay. We suggest a development of the Lyapunov function method involving the use of scalar comparison equations and limit functions and equations. We prove a localization theorem for the positive limit set of a bounded solution and a theorem on the asymptotic stability of the zero solution. We present examples of sufficient conditions for the asymptotic stability of solutions of systems of the first, second, and arbitrary orders.  相似文献   

16.
In this paper a system of three delay differential equations representing a Hopfield type general model for three neurons with two-way (bidirectional) time delayed connections between the neurons and time delayed self-connection from each neuron to itself is studied. Delay independent and delay dependent sufficient conditions for linear stability, instability and the occurrence of a Hopf bifurcation about the trivial equilibrium are addressed. The partition of the resulting parametric space into regions of stability, instability, and Hopf bifurcation in the absence of self-connection is realized. To extend the local Hopf branches for large delay values a particular bidirectional delayed tri-neuron model without self-connection is investigated. Sufficient conditions for global existence of multiple non-constant periodic solutions are obtained for such a model using the global Hopf-bifurcation theorem for functional differential equations due to J. Wu and the Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney, and following the approach developed by Wei and Li.  相似文献   

17.
The delayed logistic equation (also known as Hutchinson’s equation or Wright’s equation) was originally introduced to explain oscillatory phenomena in ecological dynamics. While it motivated the development of a large number of mathematical tools in the study of nonlinear delay differential equations, it also received criticism from modellers because of the lack of a mechanistic biological derivation and interpretation. Here, we propose a new delayed logistic equation, which has clear biological underpinning coming from cell population modelling. This nonlinear differential equation includes terms with discrete and distributed delays. The global dynamics is completely described, and it is proven that all feasible non-trivial solutions converge to the positive equilibrium. The main tools of the proof rely on persistence theory, comparison principles and an $$L^2$$-perturbation technique. Using local invariant manifolds, a unique heteroclinic orbit is constructed that connects the unstable zero and the stable positive equilibrium, and we show that these three complete orbits constitute the global attractor of the system. Despite global attractivity, the dynamics is not trivial as we can observe long-lasting transient oscillatory patterns of various shapes. We also discuss the biological implications of these findings and their relations to other logistic-type models of growth with delays.  相似文献   

18.
In this paper, the dynamics of a diffusive delayed predator-prey model with herd behavior and prey harvesting subject to the homogeneous Neumann boundary condition is considered. Firstly, choosing the harvesting term as a bifurcation parameter, then we obtain the existence and the stability of the equilibrium by analyzing the distribution of the roots of associated characteristic equation. Secondly, time delay is regarding as a bifurcation parameter, and the use of the normal form theory and center manifold theorem, the existence, stability and direction of bifurcating periodic solutions are all demonstrated detailly. Finally, summarizing some numerical simulations to illustrate the theoretical analysis.  相似文献   

19.
The problem of the stability of the equilibrium position of a scleronomic mechanical system is considered. The comparison method enables this problem to be reduced to the problem of the stability of scalar differential equations. The stability conditions are found for certain types of scalar comparison equations (Sections 1–4), and the sufficient conditions for the stability of the equilibrium positions of various scleronomous mechanical systems are determined from these (Sections 5–9).  相似文献   

20.
本文考察描述种群变化模型的无穷延滞周期微分方程,得到了稳定正周期解存在唯一性的充分性条件.与早期有关工作不同的是,作者利用了这类方程本身特有的解关于初值混合单调的性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号