首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have investigated the reaction pathways involved in the unseeded electroless deposition of copper on self-assembled monolayers (SAMs) adsorbed on Au, using time-of-flight secondary ion mass spectrometry, optical microscopy, and scanning electron microscopy. At 22 degrees C copper deposits on both -CH3 and -COOH terminated SAMs. No copper deposition is observed on -OH terminated SAMs because the hydroxyl terminal groups react with formaldehyde in the plating solution, forming an acetal which prevents Cu deposition. At higher deposition temperatures (45 degrees C), no Cu is observed to deposit on -CH3 terminated SAMs because Cu2+ ions are not stabilized on the SAM surface. Copper complexes are still able to form with the -COOH terminal group at 45 degrees C, and so copper continues to be deposited on -COOH terminated SAMs. Copper also penetrates through -CH3 and -COOH terminated SAMs to the Au/S interface, suggesting that soft deposition techniques do not prevent the penetration of low-to-moderate reactivity metals through organic films.  相似文献   

3.
Chemistry is described for the fabrication of DNA arrays on gold surfaces. Alkanethiols modified with terminal aldehyde groups are used to prepare a self-assembled monolayer (SAM). The aldehyde groups of the monolayer may be reacted with amine-modified oligonucleotides or other amine-bearing biomolecules to form a Schiff base, which may then be reduced to a stable secondary amine by treatment with sodium cyanoborohydride. The surface modifications and reactions are characterized by polarization modulation Fourier transform infrared reflection absorption spectroscopy (PM-FTIRRAS), and the accessibility, binding specificity, and stability of the DNA-modified surfaces are demonstrated in hybridization experiments.  相似文献   

4.
We have used self-assembled monolayers (SAMs) prepared from omega-terminated alkanethiols on gold to generate model surfaces and examine the effect of surface composition on the adsorption of Photosystem I (PSI), stabilized in aqueous solution by Triton X-100. Triton-stabilized PSI adsorbs to high-energy surfaces prepared from HO- and HO2C-terminated alkanethiols but does not adsorb to low-energy surfaces. The inhibition of PSI adsorption at low-energy surfaces is consistent with the presence of a layer of Triton X-100 that adsorbs atop the hydrophobic SAM and presents a protein-resistant poly(ethylene glycol) (PEG) surface. While the presence of the PEG surface prevents the adsorption of PSI, the displacement of the inhibiting layer of Triton X-100 by dodecanol, a more active surfactant, greatly enhances the adsorption of PSI. This inhibiting effect by Triton X-100 can be extended to other protein systems such as bovine serum albumin.  相似文献   

5.
The penetration behavior of thermally evaporated Au on S(CH(2))(15)CH(3), S(CH(2))(15)CO(2)CH(3), S(CH(2))(15)CO(2)H, K-modified S(CH(2))(15)CO(2)CH(3), and K-modified S(CH(2))(15)CO(2)H self-assembled monolayers (SAM) on Au substrates is investigated. Gold is a particularly interesting metal since vapor-deposited Au atoms are known to pass through alkanethiolate SAMs on Au{111} substrates at room temperature. Here we show that it is possible to control Au penetration by adjusting the interactions between terminal groups. It is found that Au atoms evenly penetrate into the CH(3) and CO(2)CH(3) films, forming smooth buried layers below the organic thin films. For the CO(2)H film, although Au atoms can still penetrate through it, filaments and mushroomlike clusters form due to H-bonding between film molecules. In the case of the K-modified CO(2)CH(3) or CO(2)H films, however, most Au atoms form islands at the vacuum interface. These results suggest that van der Waals forces and H-bonds are not strong enough to block Au from going through but that ionic interactions are able to block Au penetration. The measurements were performed primarily using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). The combination of these highly complementary probes provides a very useful strategy for the study of metal atom behavior on SAMs.  相似文献   

6.
The electronic properties of pristine and cross-linked (CL) self-assembled monolayers (SAMs) of [1,1';4',1' '-terphenyl]-4,4' '-dimethanethiol (TPDMT) on Au were studied by electrochemical measurements, including cyclic voltammetry and impedance spectroscopy. In addition, nickel deposition onto the TPDMT and CL-TPDMT substrates was investigated. In all cases, the TPDMT and CL-TPDMT films were found to be insulators, which effectively blocked the ionic permeation of electrolyte, preventing direct access of ions to the Au electrode. At the same time, CL-TPDMT is a better electric insulator than the pristine TPDMT SAM. The top Ni layer in the Ni/CL-TPDMT/Au arrangement was electrically isolated from the Au substrate, and no short circuits occurred. This layer was found to be conductive and relatively stable in the broad potential range in the electrolyte solution.  相似文献   

7.
The electronic properties of alkanethiolate [CH3(CH2)nS-, n = 9 and 11] and alkaneselenolate [CH3(CH2)nSe-, n = 9 and 11] self-assembled monolayers on Au{111} have been quantitatively compared. Simultaneously acquired apparent tunneling barrier height (ATBH) and scanning tunneling microscopy (STM) images reveal that alkanethiolate molecules have a lower barrier to tunneling, and therefore a higher conductance than alkaneselenolates of the same alkyl chain length. Molecular and contact conductance differences were elucidated by using observed STM topographic tunneling height differences between the analogous species. This apparent topographic difference combined with comparative ATBH data indicate that the observed decrease in conductance for alkaneselenolates compared to alkanethiolates originates exclusively from the Au-chalcogenide physical, chemical, and electronic contact.  相似文献   

8.
Electrostatically stabilized monolayer shells of metal-oxide cluster anions (polyoxometalates, or POMs) on the surfaces of ca. 8 nm tetrahedral and octahedral gold nanocrystals regioselectively direct water-soluble alkanethiolate ligands to the corners and edges of the gold polyhedra.  相似文献   

9.
Gold is known to have good biocompatibility because of its inert activity and the surface property can be easily tailored with self-assembled monolayers (SAMs). In previous works, gold surfaces were tailored with homogeneously mixed amine and carboxylic acid functional groups to generate surfaces with a series of isoelectronic points (IEPs). In other words, by tailoring the chemical composition in binary SAMs, different surface potentials can be obtained under controlled pH environments. To understand how the surface potentials affect the interaction at the interface, a binary-SAMs-modified Au electrode on a quartz crystal microbalance with dissipation detection (QCM-D) was used owing to the high weight sensitivity of QCM-D. In QCM-D, the frequency shift and the energy dissipation are monitored simultaneously to determine the adsorption behaviors of the plasmid DNA to surfaces of various potentials in Tris-buffered NaCl solutions of different pH. The results revealed that the plasmid DNA can be adsorbed on the SAM-modified surfaces electrostatically; thus, in general, the amount of adsorbed plasmid DNA decreased with increasing environmental pH and the decreasing ratio of the amine functional groups on the surfaces owing to weaker positive potentials on the surface. For the high amine-containing surfaces, due to the strong electrostatic attraction, denser films were observed, and thus, the apparent thickness decreased slightly. The negatively charged carboxylic acid surfaces can still adsorb the negatively charged plasmid DNA at some conditions. In other words, the electrostatic model cannot explain the adsorption behavior completely, and the induced dipole (Debye) interaction between the charged and polarizable molecules needs to be considered as well.  相似文献   

10.
We present results from atomic force microscopy (AFM) images indicating various experimental conditions, which alter the morphological characteristics of self-assembled cyanobacterial PS I on hydroxyl-terminated self-assembled alkanethiolate monolayers (SAM/Au) substrates. AFM topographical images of SAM/Au substrates incubated in solutions containing different PS I concentrations solubilized with Triton X-100 as the detergent reveal large columnar aggregates (~100 nm and hence, much taller than a single PS I trimer) at high PS I concentrations. Depositions from dilute PS I suspensions reveal fewer aggregates and relatively uniform surface topography (~10 nm). Confocal fluorescence microscopy analysis of fluorescently tagged PS I deposited on to SAM/Au substrates using electric field and gravity driven techniques reveal preliminary indications of directionally aligned PS I attachments, besides corroborating a uniform monolayer formation, for the former deposition method. The complex attachment dynamics of PS I onto SAM substrates are further investigated from the AFM images of PS I/SAM/Au substrates prepared under different experimental conditions using: 1) PS I isolated as monomers and trimers 2) adsorption at elevated temperatures, and 3) different detergents with varying pH values. In each of the cases, the surface topology indicated distinct yet complex morphological and phase characteristics. These observations provide useful insight into the use of experimental parameters to alter the morphological assembly of PS I on to SAM substrates en route to successful fabrication of PS I based biohybrid photoelectrochemical devices.  相似文献   

11.
We have investigated collisions between Ar and alkanethiolate self-assembled monolayers (SAMs) using classical trajectory calculations with several potential-energy surfaces. The legitimacy of the potential-energy surfaces is established through comparison with molecular-beam data and ab initio calculations. Potential-energy surfaces used in previous work overestimate the binding of Ar to the SAM, leading to larger energy transfer than found in the experiments. New calculations, based on empirical force fields that better reproduce ab initio calculations, exhibit improved agreement with the experiments. In particular, polar-angle-dependent average energies calculated with explicit-atom potential-energy surfaces are in excellent agreement with the experiments. Polar- and azimuthal-angle-dependent product translational energies are examined to gain deeper insight into the dynamics of Ar+SAM collisions.  相似文献   

12.
The coadsorption of alkanethiols on noble metals has been recognized for a long time as a suitable means of affording surfaces with systematically varied wettability and other properties. In this article, we report on a comparative study of the composition of the mixed self-assembled monolayers (SAMs) obtained (i) by the coadsorption of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) from ethanol and chloroform onto gold substrates and (ii) by microcontact printing using poly(dimethyl siloxane) (PDMS) stamps. SAMs prepared by coadsorption from solution showed a preferential adsorption of ODT for both solvents, but this trend was reversed in microcontact-printed SAMs when using chloroform as a solvent, as evidenced by contact angle and Fourier transform infrared (FTIR) spectroscopy measurements. An approximately linear relationship between the static contact angle and the degree of swelling with different solvents was observed, which suggests that the surface composition can be controlled by the interaction of the solvent and the PDMS elastomer. The altered preference is attributed to the different partitioning of the two thiols into solvent-swelled PDMS, as shown by (1)H NMR spectroscopy. Finally, molecularly mixed binary SAMs on ODT and MHDA on template-stripped gold were applied to study the effect of surface nanobubbles on wettability by atomic force microscopy (AFM). With a decreasing macroscopic contact angle measured through water, the nanoscopic contact angle was found to decrease as well.  相似文献   

13.
Li Z  Niu T  Zhang Z  Chen R  Feng G  Bi S 《The Analyst》2011,136(10):2090-2099
In this article we studied the permeable characteristics of thiol-modified double-stranded DNA (ds-DNA) self-assembled monolayers (SAMs) on a gold substrate assembled under different NaCl concentrations by electrochemical methods. It was based on the inspection of five important parameters including interfacial capacitance (C), phase angle (Φ(1?Hz)), ions transfer resistance (R(it)*), current density difference (Δj) and electron transfer rate (k(et)) through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Three sections were included: (1) Investigation of the relationships of C, Φ(1?Hz), R(it)*, Δj and k(et) with NaCl concentrations and comparison with the reports from literature. Experimental results showed that ds-DNA-SAMs were permeable films. (2) Construction of a simple model for exploring the permeable characteristics of ds-DNA-SAMs on gold. (3) Confirmation of the simple model by chronocoulometry (CC) and application of the model to explain the permeable mechanism. This study was significant for exploring the mechanism of electron transfer through the interior of ds-DNA duplex helix.  相似文献   

14.
Potassium hydroxide solution was used to etch un-doped GaN grown on the sapphire substrate at 180 and 260 °C. We illustrated the etching phenomenon in detail and probed its mechanism in the wet etching process. By multiplying the planar density and the number of dangling bonds on the N atom, we proposed the etching barrier index (EBI) to describe the difficulty degree of each lattice facet. The raking of EBI will be +c-plane > a-plane > m-plane > ?c-plane > (10-1-1) plane > r-plane. Combining the EBI with SEM results, we thoroughly studied the whole etching process. We confirmed that in our research, KOH wet etching on GaN starts from the r-plane instead of the +c-plane or ?c-plane, which differs from other studies. We also found that during the high-temperature etching process, there are two etching approaches. In one, the etching begins vertically from the top to the bottom, then horizontally, and finally reversely from the bottom to the top. In the other, etching pits will develop into a hexagonal hole of the sidewall of m-plane.  相似文献   

15.
The kinetics of chelation of Pb(II), Zn(II) and Cd(II) with the ligand EDTA have been followed at the realistic trace concentration level 10?8–10?7M for both reactants in sea water and model solutions of its major salinity components by differential pulse stripping voltammetry. In this manner the specific influences of the salinity components on the formation rate constants [having in sea water for PbEDTA the order of 3×103 and for the EDTA chelates of Zn(II) and Cd(II) of 3×102 l M?1 s?1] could be determined. The measurements emphasize the pronounced specific influences of Ca(II) on the kinetics and course of the trace metal chelation in media where this alkaline earth ion is present in substantial excess to organic chelating agents. The experiments with EDTA are to be regarded as a close simulation of the chelation processes occurring for the trace metals studied by components with suitable chelation power of dissolved organic matter (DOM) in the sea and the resulting conclusions on the mechanism are thus of general significance.  相似文献   

16.
We have investigated the photooxidation of alkanethiolate self-assembled monoalyers (SAMs) adsorbed on GaAs (001) using time-of-flight secondary ion mass spectrometry. Both -CH3- and -COOH-terminated SAMs undergo photoreaction to form sulfonated species upon exposure to UV light from a 500 W Hg arc lamp (lambda = 280-440 nm) in the presence of oxygen. In contrast to SAMs adsorbed on metals, the photooxidation of octadecanethiol adsorbed on GaAs can be fit to two first-order reactions: a fast initial reaction followed by a second slower reaction ( approximately 6 times slower). For SAMs with shorter alkyl chain lengths, the photooxidation process is can be fit to a single first-order reaction. Using the optimal photooxidation time, we also demonstrate that SAMs can be successfully UV photopatterned on GaAs substrates producing sharp, well-defined patterns.  相似文献   

17.
Weizmann Y  Patolsky F  Willner I 《The Analyst》2001,126(9):1502-1504
A novel amplification route for DNA detection based on the deposition of gold on a 10 nm Au-colloid/avidin conjugate label acting as a 'seeding' catalyst, is described. Microgravimetric quartz-crystal-microbalance measurements are employed to transduce the catalyzed deposition of gold on the piezoelectric crystals. Three different DNA detection schemes are described: (i) analysis of a 27-base nucleic acid fragment; (ii) analysis of the entire M13phi DNA (7229 bases); and (iii) detection of a single-base mismatch in a DNA. Ultrasensitive detection of DNA is accomplished by the catalyzed deposition of gold, detection limit approximately 1 x 10(-15) M.  相似文献   

18.
Stability of self-assembled monolayers on titanium and gold   总被引:1,自引:0,他引:1  
Methyl- and hydroxyl-terminated phosphonic acid self-assembled monolayers (SAMs) were coated on Ti from aqueous solution. Dodecyl phosphate and dodecyltrichlorosilane SAMs were also coated on Ti using solution-phase deposition. The stability of SAMs on Ti was investigated in Tris-buffered saline (TBS) at 37 degrees C using X-ray photoelectron spectroscopy, contact angle goniometry, and atomic force microscopy. For comparison purposes, a hydroxyl-terminated thiol SAM was coated on Au, and its stability was also investigated under similar conditions. In TBS, a significant proportion of phosphonic acid or phosphate molecules were desorbed from the Ti surface within 1 day, while the trichlorosilane SAM on Ti or thiol SAM on Au was stable for up to 7 days under similar conditions. The stability of hydroxyl-terminated phosphonic acid SAM coated Ti and thiol SAM coated Au was investigated in ambient air and ultraviolet (UV) light. In ambient air, the phosphonic acid SAM on Ti was stable for up to 14 days, while the thiol SAM on Au was not stable for 1 day. Under UV-radiation exposure, the alkyl chains of the phosphonic acid SAM were decomposed, leaving only the phosphonate groups on the Ti surface after 12 h. Under similar conditions, decomposition of alkyl chains of the thiol SAM was observed on the Au surface accompanied by oxidation of thiolates.  相似文献   

19.
20.
We report the reactivity of acetylenyl-terminated self-assembled monolayers (SAMs) on gold toward "click" chemistry, Huisgen 1,3-dipolar addition, leading to the formation of triazoles. After the formation of acetylenyl-terminated SAMs, the triazole formation was performed on the SAMs and the reaction was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry. "Click" chemistry has offered a versatile strategy for the functionalization in solution chemistry with mild reaction conditions and a high compatibility in functional groups, and our result shows that the reaction could be applied to acetylenyl-terminated SAMs for the introduction of useful functional groups to the surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号