首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Wang X  Fu L  Wei G  Hu J  Zhao X  Liu X  Li Y 《Journal of separation science》2008,31(16-17):2932-2938
A new method for the determination of four aromatic amines in water samples was developed by using dispersive liquid-liquid microextraction (DLLME) technique combined with HPLC-variable wavelength detection (HPLC-VWD). In this extraction method, 0.50 mL methanol (as dispersive solvent) containing 25.0 microL tetrachloroethane (as extraction solvent) was rapidly injected by a syringe into 5.00 mL water sample. Accordingly, a cloudy solution was formed. After centrifugation for 2 min at 4000 rpm, the fine droplets of the tetrachloroethane containing the analytes were sedimented in the bottom of the conical test tube (7+/-0.2 microL). Then, 5.0 microL of the settled phase was determined by HPLC-VWD. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time, and salt concentration were optimized. Under the optimum conditions, the enrichment factors ranged from 41.3 to 94.5. Linearity was observed in the range of 5-5000 ng/mL. The LODs based on S/N of 3 ranged from 0.8 to 1.8 ng/mL. The RSDs (for 400 ng/mL of p-toluidine and o-chloroaniline, 100 ng/mL of p-chloroaniline and p-bromoaniline) varied from 4.1 to 5.3% (n=6). The water samples collected from rivers and lakes were successfully analyzed by the proposed method and the relative recoveries were in the range of 85.4-111.7% and 90.2-101.3%, respectively.  相似文献   

2.
A simple and rapid new dispersive liquid-liquid microextraction technique (DLLME) coupled with gas chromatography-ion trap mass spectrometric detection (GC-MS) was developed for the extraction and analysis of triazine herbicides from water samples. In this method, a mixture of 12.0 microL chlorobenzene (extraction solvent) and 1.00 mL acetone (disperser solvent) is rapidly injected by syringe into the 5.00 mL water sample containing 4% (w/v) sodium chloride. In this process, triazines in the water sample are extracted into the fine droplets of chlorobenzene. After centrifuging for 5 min at 6000 rpm, the fine droplets of chlorobenzene are sedimented in the bottom of the conical test tube (8.0+/-0.3 microL). The settled phase (2.0 microL) is collected and injected into the GC-MS for separation and determination of triazines. Some important parameters, viz, type of extraction solvent, identity and volume of disperser solvent, extraction time, and salt effect, which affect on DLLME were studied. Under optimum conditions the enrichment factors and extraction recoveries were high and ranged between 151-722 and 24.2-115.6%, respectively. The linear range was wide (0.2-200 microg L(-1)) and the limits of detection were between 0.021 and 0.12 microg L(-1) for most of the analytes. The relative standard deviations (RSDs) for 5.00 microg L(-1) of triazines in water were in the range of 1.36-8.67%. The performance of the method was checked by analysis of river and tap water samples, and the relative recoveries of triazines from river and tap water at a spiking level of 5.0 microg L(-1) were 85.2-114.5% and 87.8-119.4%, respectively. This method was also compared with solid-phase microextraction (SPME) and hollow fiber protected liquid-phase microextraction (HFP-LPME) methods. DLLME is a very simple and rapid method, requiring less than 3 min. It also has high enrichment factors and recoveries for the extraction of triazines from water.  相似文献   

3.
The need for highly reliable methods for the determination of trace and ultratrace elements has been recognized in analytical chemistry and environmental science. A simple and powerful microextraction technique was used for the detection of the lead ultratrace amounts in water samples using the dispersive liquid-liquid microextraction (DLLME), followed by the electrothermal atomic absorption spectrometry (ET AAS). In this microextraction technique, a mixture of 0.50 mL acetone (disperser solvent), containing 35 microL carbon tetrachloride (extraction solvent) and 5 microL diethyldithiophosphoric acid (chelating agent), was rapidly injected by syringe into the 5.00 mL water sample, spiked with lead. In this process, the lead ions reacted with the chelating agent and were extracted into the fine droplets of CCl(4). After centrifugation (2 min at 5000 rpm), the fine CCl4 droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then, 20 microL from the sedimented phase, containing the enriched analyte, was determined by ET AAS. The next step was the optimization of various experimental conditions, affecting DLLME, such as the type and the volume of the extraction solvent, the type and the volume of the disperser solvent, the extraction time, the salt effect, pH and the chelating agent amount. Moreover, the effect of the interfering ions on the analytes recovery was also investigated. Under the optimum conditions, the enrichment factor of 150 was obtained from only a 5.00 mL water sample. The calibration graph was linear in the range of 0.05-1 microg L(-1) with the detection limit of 0.02 microg L(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 0.50 microg L(-1) of lead was 2.5%. The relative lead recoveries in mineral, tap, well and sea water samples at the spiking level of 0.20 and 0.40 microg L(-1) varied from 93.5 to 105.0. The characteristics of the proposed method were compared with the cloud point extraction (CPE), the liquid-liquid extraction, the solid phase extraction (SPE), the on-line solid phase extraction (SPE) and the co-precipitation, based on bibliographic data. The main DLLME advantages combined with ET AAS were simplicity of operation, rapidity, low cost, high-enrichment factor, good repeatability, low consumption of extraction solvent, requiring a low sample volume (5.00 mL).  相似文献   

4.
Li Y  Hu J  Liu X  Fu L  Zhang X  Wang X 《Journal of separation science》2008,31(13):2371-2376
A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME), has been developed for the extraction and preconcentration of decabrominated diphenyl ether (BDE-209) in environmental water samples. The factors relevant to the microextraction efficiency, such as the kind and volume of extraction and dispersive solvent, the extraction time, and the salt effect, were optimized. Under the optimum conditions (extraction solvent: tetrachloroethane, volume, 22.0 microL; dispersive solvent: THF, volume, 1.00 mL; extraction time: below 5 s and without salt addition), the most time-consuming step is the centrifugation of the sample solution in the extraction procedure, which is about 2 min. In this method, the enrichment factor could be as high as 153 in 5.00 mL water sample, and the linear range, correlation coefficient (r(2)), detection limit (S/N = 3), and precision (RSD, n = 6) were 0.001-0.5 microg/mL, 0.9999, 0.2 ng/mL, and 2.1%, respectively. This method was successfully applied to the extraction of BDE-209 from tap, East Lake, and Yangtse River water samples; the relative recoveries were 95.8, 92.9, and 89.9% and the RSD% (n = 3) were 1.9, 2.7, and 3.5%, respectively. Comparison of this method with other methods, such as solid-phase microextraction (SPME), and single-drop microextraction (SDME), indicates that DLLME is a simple, fast, and low-cost method for the determination of BDE-209, and thus has tremendous potential in polybrominated diphenyl ethers (PBDEs) residual analysis in environmental water samples.  相似文献   

5.
采用分散液相微萃取与气相色谱-电子捕获检测联用技术建立了测定葡萄样品中百菌清、克菌丹和灭菌丹农药残留的新方法.对影响萃取和富集效率的因素进行了优化.萃取条件选定为在10 mL带塞离心试管中加入 5.0 mL葡萄样品溶液,并加入1.0 mL丙酮(分散剂),振荡摇匀后以5000 r/min离心5 min,然后将上层清液转移至另一离心试管中,加10.0 μL氯苯(萃取剂),分散混匀后再以5000 r/min离心5 min,萃取剂氯苯相沉积到试管底部,吸取1.0 μL萃取相直接进样分析.在优化的实验条件下,3种杀菌剂的富集倍数可达788~876倍;检出限在6.0~8.0 μg/kg(S/N=3∶ 1)范围内.以α-六六六为内标,测定3种杀菌剂的线性范围为10~150 μg/kg,线性相关系数在0.9990~0.9995范围内.本方法已成功应用于葡萄样品中百菌清、克菌丹和灭菌丹残留的测定,平均加标回收率在92.3%~106.1%范围内;相对标准偏差在4.5%~7.2%之间,结果令人满意.  相似文献   

6.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

7.
Dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction and preconcentration of diethofencarb (DF) and pyrimethanil (PM) in environmental water. In the method, a suitable mixture of extraction solvent (50 µL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) are injected into the aqueous samples (5.00 mL) and the cloudy solution is observed. After centrifugation, the enriched analytes in the sediment phase were determined by HPLC-VWD. Different influencing factors, such as the kind and volume of extraction and dispersive solvent, extraction time and salt effect were investigated. Under the optimum conditions, the enrichment factors for DF and PM were both 108 and the limit of detection were 0.021 ng mL?1 and 0.015 ng mL?1, respectively. The linear ranges were 0.08–400 ng mL?1 for DF and 0.04–200 ng mL?1 for PM. The relative standard deviation (RSDs) were both almost at 6.0% (n = 6). The relative recoveries from samples of environmental water were from the range of 87.0 to 107.2%. Compared with other methods, DLLME is a very simple, rapid, sensitive (low limit of detection) and economical (only 5 mL volume of sample) method.  相似文献   

8.
A new microextraction technique termed dispersive liquid-liquid microextraction (DLLME) was developed. DLLME is a very simple and rapid method for extraction and preconcentration of organic compounds from water samples. In this method, the appropriate mixture of extraction solvent (8.0 microL C2Cl4) and disperser solvent (1.00 mL acetone) are injected into the aqueous sample (5.00 mL) by syringe, rapidly. Therefore, cloudy solution is formed. In fact, it is consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. After centrifuging, the fine particles of extraction solvent are sedimented in the bottom of the conical test tube (5.0 +/- 0.2 microL). The performance of DLLME is illustrated with the determination of polycyclic aromatic hydrocarbons (PAHs) in water samples by using gas chromatography-flame ionization detection (GC-FID). Some important parameters, such as kind of extraction and disperser solvent and volume of them, and extraction time were investigated. Under the optimum conditions the enrichment factor ranged from 603 to 1113 and the recovery ranged from 60.3 to 111.3%. The linear range was 0.02-200 microg/L (four orders of magnitude) and limit of detection was 0.007-0.030 microg/L for most of analytes. The relative standard deviations (RSDs) for 2 microg/L of PAHs in water by using internal standard were in the range 1.4-10.2% (n = 5). The recoveries of PAHs from surface water at spiking level of 5.0 microg/L were 82.0-111.0%. The ability of DLLME technique in the extraction of other organic compounds such as organochlorine pesticides, organophosphorus pesticides and substituted benzene compounds (benzene, toluene, ethyl benzene, and xylenes) from water samples were studied. The advantages of DLLME method are simplicity of operation, rapidity, low cost, high recovery, and enrichment factor.  相似文献   

9.
A new method was used for the extraction of organophosphorus pesticides (OPPs) from water samples: dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame photometric detection (GC-FPD). In this extraction method, a mixture of 12.0 microL chlorobenzene (extraction solvent) and 1.00 mL acetone (disperser solvent) is rapidly injected into the 5.00 mL water sample by syringe. Thereby, a cloudy solution is formed. In fact, the cloudy state is because of the formation of fine droplets of chlorobenzene, which has been dispersed among the sample solution. In this step, the OPPs in water sample are extracted into the fine droplets of chlorobenzene. After centrifuging (2 min at 5000 rpm), the fine droplets of chlorobenzene are sedimented in the bottom of the conical test tube (5.0+/-0.3 microL). Sedimented phase (0.50 microl) is injected into the GC for separation and determination of OPPs. Some important parameters, such as kind of extraction and disperser solvent and volume of them, extraction time, temperature and salt effect were investigated. Under the optimum conditions, the enrichment factors and extraction recoveries were high and ranged between 789-1070 and 78.9-107%, respectively. The linear range was wide (10-100,000 pg/mL, four orders of magnitude) and limit of detections were very low and were between 3 to 20 pg/mL for most of the analytes. The relative standard deviations (RSDs) for 2.00 microg/L of OPPs in water with internal standard were in the range of 1.2-5.6% (n=5) and without internal standard were in the range of 4.6-6.5%. The relative recoveries of OPPs from river, well and farm water at spiking levels of 50, 500 and 5000 pg/mL were 84-125, 88-123 and 93-118%, respectively. The performance of proposed method was compared with solid-phase microextraction (SPME) and single drop microextraction. DLLME is a very simple and rapid (less than 3 min) method, which requires low volume of sample (5 mL). It also has high enrichment factor and recoveries for extraction of OPPs from water.  相似文献   

10.
In this study a dispersive liquid-liquid microextraction (DLLME) method based on the dispersion of an extraction solvent into aqueous phase in the presence of a dispersive solvent was investigated for the preconcentration of Cu(2+) ions. 8-Hydroxy quinoline was used as a chelating agent prior to extraction. Flame atomic absorption spectrometry using an acetylene-air flame was used for quantitation of the analyte after preconcentration. The effect of various experimental parameters on the extraction was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was performed at five levels of the operating parameters. Nearly the same results for optimization were obtained using both methods: sample size 5 mL; volume of dispersive solvent 1.5 mL; dispersive solvent methanol; extracting solvent chloroform; extracting solvent volume 250 microL; 8-hydroxy quinoline concentration and salt amount do not affect significantly the extraction. Under the optimum conditions the calibration graph was linear over the range 50-2000 muicro L(-1). The relative standard deviation was 5.1% for six repeated determinations at a concentration of 500 microg L(-1). The limit of detection (S/N=3) was 3 microg L(-1).  相似文献   

11.
A fast, inexpensive and efficient sample preparation method for the determination of 10 organophosphorus compounds in water samples is presented. Analytes were extracted using the dispersive liquid-liquid microextraction (DLLME) technique and determined by gas chromatography with nitrogen-phosphorus detection (GC-NPD). The influence of several variables (e.g. type and volume of dispersant and extraction solvents, ionic strength, shaking time and mode, etc.) on the performance of the sample preparation step was carefully evaluated. Under final working conditions, 1 mL of acetone containing a 2% of 1,1,1-trichloroethane (20 microL) was added to 10 mL of water with 20% of sodium chloride. The ternary mixture was centrifuged at 3500 rpm to allow phase separation. After removing the aqueous supernatant, an aliquot of the settled extract was injected in the GC-NPD system. Under the above conditions, the method provided enrichment factors between 190 and 830 times (depending on the considered compound), relative standard deviations below 10%, except for tris(2-ethylhexyl) phosphate (TEHP), and quantification limits between 0.01 and 0.08 ng/mL. Matrix effects were assessed using different water samples, and accuracy was evaluated by comparison with solid-phase microextraction.  相似文献   

12.
A novel method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. A mixture of extraction solvent (41 μL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) were rapidly injected into 5.0 mL aqueous sample for the formation of cloudy solution, the analytes in the sample were extracted into the fine droplets of CCl4. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 5000 ng mL−1 for target analytes. The enrichment factors for DMP, DEP and DnBP were 45, 92 and 196, respectively, and the limits of detection were 1.8, 0.88 and 0.64 ng mL−1, respectively. The relative standard deviations (R.S.D.) for the extraction of 10 ng mL−1 of phthalate esters were in the range of 4.3-5.9% (n = 7). Lake water, tap water and bottled mineral water samples were successfully analyzed using the proposed method.  相似文献   

13.
A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste. The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis. The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5, volume ratio), flow rate was 0.7 mL/min and UV wavelength was 476 nm. Under optimal conditions, good linearity was obtained in a range of 0.2―200.0 μg/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 μg/mL, and the extraction recoveries at three spiked levels ranged from 88.3%―92.5% with a relative standard deviation(RSD) less than 4.3%. Moreover, the mean contents of astaxanthin in the three batches of shrimp waste were 95.9, 85.4 and 77.2 μg/g, respectively. This method combining the advantages of MISPE and DLLME results in high selectivity and low cost, which was applied to determining the astaxanthin level in shrimp waste samples.  相似文献   

14.
A new preconcetration method of dispersive liquid-liquid microextraction (DLLME) was developed for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium. DLLME technique was successfully used as a sample preparation method. In this preconcentration method, an appropriate mixture of extraction solvent, disperser solvent was injected rapidly into an aqueous solution containing Sm, Eu, Gd and Dy after complex formation using chelating reagent of the 1-(2-pyridylazo)-2-naphthol (PAN). After phase separation, 0.5 mL of the settled phase containing enriched analytes was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The main factors affected the preconcentration of Sm, Eu, Gd and Dy were extraction and dispersive solvent type and their volume, extraction time, volume of chelating agent (PAN), centrifuge speed and drying temperature of the samples. Under the best operating condition simultaneous preconcentration factors of 80, 100, 103 and 78 were obtained for Sm, Eu, Gd and Dy, respectively.  相似文献   

15.
Simultaneous dispersive liquid-liquid microextraction (DLLME) and derivatization combined with gas chromatography-electron-capture detection (GC-ECD) was used to determine chlorophenols (CPs) in water sample. In this derivatization/extraction method, 500 microL acetone (disperser solvent) containing 10.0 microL chlorobenzene (extraction solvent) and 50 microL acetic anhydride (derivatization reagent) was rapidly injected by syringe in 5.00 mL aqueous sample containing CPs (analytes) and K(2)CO(3) (0.5%, w/v). Within a few seconds the analytes derivatized and extracted at the same time. After centrifugation, 0.50 microL of sedimented phase containing enriched analytes was determined by GC-ECD. Some effective parameters on derivatization and extraction, such as extraction and disperser solvent type and their volume, amount of derivatization reagent, derivatization and extraction time, salt addition and amount of K(2)CO(3) were studied and optimized. Under the optimum conditions, enrichment factors and recoveries are in the range of 287-906 and 28.7-90.6%, respectively. The calibration graphs are linear in the range of 0.02-400 microg L(-1) and limit of detections (LODs) are in the range of 0.010-2.0 microg L(-1). The relative standard deviations (RSDs, for 200 microg L(-1) of MCPs, 100 microg L(-1) of DCPs, 4.00 microg L(-1) of TCPs, 2.00 microg L(-1) of TeCPs and PCP in water) with and without using internal standard are in the range of 0.6-4.7% (n=7) and 1.7-7.1% (n=7), respectively. The relative recoveries of well, tap and river water samples which have been spiked with different levels of CPs are 91.6-104.7, 80.8-117.9 and 83.3-101.3%, respectively. The obtained results show that simultaneous DLLME and derivatization combined with GC-ECD is a fast simple method for the determination of CPs in water samples.  相似文献   

16.
A dispersive liquid-liquid microextraction (DLLME) procedure coupled with GC/MS detection is described for preconcentration and determination of some organophosphorus and azole group pesticides from water samples. Experimental conditions affecting the DLLME procedure were optimized by means of an experimental design. A mixture of 60 microL chlorobenzene (extraction solvent) and 750 microL acetonitrile (disperser solvent), 3.5 min extraction time, and 7.5 mL aqueous sample volume were chosen for the best recovery by DLLME. The linear range was 1.6-32 microg/L. The LOD ranged from 48.8 to 68.7 ng/L. The RSD values for organophosphorus and azole group pesticides at spiking levels of 3, 6, and 9 microg/L in water samples were in the range of 1.1-12.8%. The applicability and accuracy of the developed method were determined by analysis of spiked water samples, and the recoveries of the analyzed pesticides from artesian, stream, and tap waters at spiking levels of 3, 6, and 9 microg/L were 89.3-105.6, 89.5-103.0, and 92.0-111.3%, respectively.  相似文献   

17.
Dispersive liquid–liquid microextraction (DLLME) has been used for preconcentration of trihalomethanes (THMs) in drinking water. In DLLME an appropriate mixture of an extraction solvent (20.0 μL carbon disulfide) and a disperser solvent (0.50 mL acetone) was used to form a cloudy solution from a 5.00-mL aqueous sample containing the analytes. After phase separation by centrifugation the enriched analytes in the settled phase (6.5 ± 0.3 μL) were determined by gas chromatography with electron-capture detection (GC–ECD). Different experimental conditions, for example type and volume of extraction solvent, type and volume of disperser solvent, extraction time, and use of salt, were investigated. After optimization of the conditions the enrichment factor ranged from 116 to 355 and the limit of detection from 0.005 to 0.040 μg L−1. The linear range was 0.01–50 μg L−1 (more than three orders of magnitude). Relative standard deviations (RSDs) for 2.00 μg L−1 THMs in water, with internal standard, were in the range 1.3–5.9% (n = 5); without internal standard they were in the range 3.7–8.6% (n = 5). The method was successfully used for extraction and determination of THMs in drinking water. The results showed that total concentrations of THMs in drinking water from two areas of Tehran, Iran, were approximately 10.9 and 14.1 μg L−1. Relative recoveries from samples of drinking water spiked at levels of 2.00 and 5.00 μg L−1 were 95.0–107.8 and 92.2–100.9%, respectively. Comparison of this method with other methods indicates DLLME is a very simple and rapid (less than 2 min) method which requires a small volume of sample (5 mL).  相似文献   

18.
We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe2O3@C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L?1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %).
Figure
?  相似文献   

19.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

20.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号