首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li N  Hsu CH  Folch A 《Electrophoresis》2005,26(19):3758-3764
Portable microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed a monolithic polydimethylsiloxane (PDMS) microdevice that allows for storing and mixing subnanoliter volumes of aqueous solutions at various mixing ratios. Filling and mixing is controlled via two integrated PDMS microvalve arrays. The volumes of the microchambers are entirely defined by photolithography, hence volumes from picoliter to nanoliter can be fabricated with high precision. Because the microvalves do not require an energy input to stay closed, fluid can be stored in a highly portable fashion for several days. We have confirmed the mixing precision and predictability using fluorescence microscopy. We also demonstrate the application of the device for calibrating fluorescent calcium indicators. Due to the biocompatibility of PDMS, the device will have broad applications in miniaturized diagnostic assays as well as basic biological studies.  相似文献   

2.
《Electrophoresis》2018,39(17):2188-2194
This study describes the development of a new analytical method for the separation and detection of cocaine (COC) and its adulterants, or cutting agents, using microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C4D). All the experiments were carried out using a glass commercial ME device containing two pairs of integrated sensing electrodes. The running buffer composed of 20 mmol/L amino‐2‐(hydroxymethyl) propane‐1,3‐diol and 10 mmol/L 3,4‐dimethoxycinnamic acid provided the best separation conditions for COC and its adulterants with baseline resolution (R > 1.6), separation efficiencies ranging from (2.9 ± 0.1) to (3.2 ± 0.2) × 105 plates/m, and estimated LOD values between 40 and 150 μmol/L. The quantification of COC was successfully performed in four samples seized by the Brazilian Federal Police Department and all predicted values agree with values estimated by the reference method. Some other interfering species were detected in the seized samples during the screening procedure on ME–C4D devices. While lidocaine was detected in sample 3, the presence of levamisole was observed in samples 2 and 4. However, their concentrations were estimated to be below the LOQ. ME–C4D devices have proved to be quite efficient for the identification and quantification of COC with errors lower than 10% when compared to the data obtained by a reference method. The approach herein reported offers great potential to be used for on‐site COC screening in seized samples.  相似文献   

3.
This report describes the use of PDMS ME coupled with amperometric detection for rapid separation of ascorbic, gallic , ferulic, p‐coumaric acids using reverse polarity. ME devices were fabricated in PDMS by soft lithography and detection was accomplished using an integrated carbon fiber working electrode aligned in the end‐channel configuration. Separation and detection parameters were investigated and the best conditions were obtained using a run buffer consisting of 5 mM phosphate buffer (pH 6.9) and a detection voltage of 1.0 V versus Ag/AgCl reference electrode. All compounds were separated within 70 s using gated injection mode with baseline resolution and separation efficiencies between 1200 and 9000 plates. Calibration curves exhibited good linearity and the LODs achieved ranged from 1.7 to 9.7 μM. The precision for migration time and peak height provided maximum values of 4% for the intrachip studies. Lastly, the analytical method was successfully applied for the analysis of ascorbic and gallic acids in commercial beverage samples. The results achieved using ME coupled with amperometric detection were in good agreement with the values provided by the supplier. Based on the data reported here, the proposed method shows suitability to be applied for the routine analysis of beverage samples.  相似文献   

4.
Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as ∼25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.  相似文献   

5.
A quick and reproducible SERS-based immunoassay, using functionalized hollow gold nanospheres and magnetic beads, has been developed. Here, a simultaneous detection of dual cancer markers in blood serum has been achieved under a single excitation wavelength. The accuracy and sensitivity for clinical sera from five patients confirms their diagnostic feasibility.  相似文献   

6.
This paper describes a microfluidic system to screen and optimize organic reaction conditions on a submicrogram scale. The system uses discrete droplets (plugs) as microreactors separated and transported by a continuous phase of a fluorinated carrier fluid. Previously, we demonstrated the use of a microfabricated PDMS plug-based microfluidic system to perform assays and crystallization experiments in aqueous solutions with optical detection. Here, we developed an approach that does not require microfabrication of microfluidic devices, is applicable to synthetic reactions in organic solvents, and uses detection by MALDI-MS. As a demonstration, conditions for selective deacetylation of ouabain hexaacetate were tested, and the optimum conditions for mono-, bis-, or trisdeacetylation have been identified. These conditions were validated by scale-up reactions and isolating these potentially neurotoxic products. Mono- and bisdeacetylated products are unstable intermediates in the deacetylation and were isolated for the first time. This system enables no-loss handling of submicroliter volumes containing a few micrograms of a compound of interest. It could become valuable for investigating or optimizing reactions of precious substrates (e.g., products of long synthetic sequences and natural products that can be isolated only in small quantities).  相似文献   

7.
Manica DP  Ewing AG 《Electrophoresis》2002,23(21):3735-3743
Two novel methods are described for the fabrication of components for microchip capillary electrophoresis with electrochemical detection (microchip CEEC) on glass substrates. First, rapid marker masking is introduced as a completely nonphotolithographic method of patterning and fabricating integrated thin-film metal electrodes onto a glass substrate. The process involves applying the pattern directly onto the metal layer with a permanent marker that masks the ensuing chemical etch. The method is characterized, and the performance of the resulting electrode is evaluated using catecholamines. The response compares well with photolithographically defined electrodes and exhibits detection limits of 648 nM and 1.02 microM for dopamine and catechol, respectively. Second, laminar flow etching is introduced as a partially nonphotolithographic method of replicating channel networks onto glass substrates. The replication process involves applying a poly(dimethylsiloxane) (PDMS) mold of the channel network onto a slide coated with a sacrificial metal layer and then pulling solutions of metal etchants through the channels to transfer the pattern onto the sacrificial layer. The method is tested, and prototype channel networks are shown. These methods serve to overcome the time and cost involved in fabricating glass-based microchips, thereby making the goal of a disposable high performance lab-on-a-chip more attainable.  相似文献   

8.
With the release of the human genome sequence, there has been increasing attention given to other genetic analyses, including the detection of genetic variations and fast sequencing of multiple samples for pharmacogenomics studies. Rapid injections of samples in multiplexed separation channels by optically gated sample introduction are shown here for DNA separation. Serial separations of four amino acids are shown in less than four seconds on a microchip with four multiplexed channels. Five short oligonucleotides have also been rapidly separated in 2% LPA with four channels using this technique. In addition, multiple unique samples have been simultaneously separated and five-base resolution has been demonstrated.  相似文献   

9.
The development of a fully automated microsystem housing an amperometric immunosensor is presented. The microfluidic cell integrates reagent storage and electrochemical immunodetection and was applied for the detection of breast cancer markers. The main advantage of this system is that no external fluidic storage is required and the instrumental setup is thus greatly simplified. The fluidics of the microsystem is computer controlled and requires minimal end-user intervention. The analytical performance of the device was compared with a manually driven system and applied for the amperometric detection of the carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3). This automation methodology greatly improves the analytical performance of the immunosensor in terms of accuracy and reproducibility as evidenced by a reduction of LOD observed for CEA and CA15-3 with respect to a manually driven system. Finally, the automated microsystem was applied for the analysis of real patient serum samples, demonstrating excellent correlation with a commercial ELISA.  相似文献   

10.
Label-free techniques such as surface plasmon resonance (SPR) have used a step-response excitation method to characterize the binding of two biochemical entities. A major drawback of the step response technique is its high susceptibility to thermal drifts and noise which directly determine the minimum detectable binding mass. In this paper we present a new frequency-domain method based on the use of multisine chemical excitation that is much less sensitive to these disturbances. The multisine method was implemented in a PDMS microfluidic chip using a dual channel, dual multiplug chemical signal generator connected to functionalized and reference SPR binding spots. Kinetic constants for the reaction are extracted from the characteristics of the sense spot response versus frequency. The feasibility of the technique was tested using a model system of Carbonic Anhydrase-II analyte and amino-benzenesulfonamide ligand. The experimental signal to noise ratio (SNR) for the multisine measurement is about 32 dB; 7 dB higher than that observed with the single step-response method, while the overall measurement time is twice as long as the step method.  相似文献   

11.
1,3-Dipolar cycloadditions of nitrile oxide generated in situ on soluble polymer with a variety of imines provided a library of 4,5-dihydro-1,2,4-oxadiazoles in good yields and purity.  相似文献   

12.
Much work has been performed since the development of the lab-on-a-chip concept that has brought microfabricated systems to the forefront of bioanalytical research. The success of using these microchips for performing complicated biological assays faster and cheaper than conventional methods has facilitated their emerging popularity among researchers. A recently exploited advantage of microfabricated technology has led to the creation of single wafers with multiple channel manifolds for high-throughput experiments. Efforts toward parallel microchip development have yielded fascinating new devices for chemical separations showing the potential for replacing conventional multiplexing techniques. This review will focus on recent work toward multiplexed separations on microdevices and complementary detection instrumentation.  相似文献   

13.
In this communication we describe a new chemical encapsulation and release platform using 3D microfabricated nanoliter scale containers with controlled porosity. The containers can be fabricated of magnetic materials that allow them to be remotely guided using magnetic fields. The favorable attributes of the containers that include a versatile highly parallel fabrication process, precisely engineered porosity, isotropic/anisotropic chemical release profiles, and remote magnetic guiding provide an attractive platform for engineering spatially controlled chemical reactions in microfluidic systems.  相似文献   

14.
Functionalization of light-emitting poly(3-methylthiophene) (P3MT) nanowires (NWs) with probe-DNA (p-DNA) and their label-free recognition of target-DNA (t-DNA) were correlated quantitatively with both the photoluminescence (PL) color and intensity of P3MT NWs.  相似文献   

15.
A model analyte, the M13 virus, was detected through the change in the Brownian motion of a population of microparticles. Epi-fluorescence microscopy was used to simultaneously track antibody-coated and bare microparticles to unambiguously measure the diffusion coefficient and demonstrate multiplexed detection. The sensitivity of the diffusometry assay was high enough that individual virus-to-particle binding ratios could be detected. Analysis of the experimental errors indicated that the primary limitation in the sensitivity of this technique was the variation in the size of the population of microparticles. Analysis of the diffusion measurement results indicated that the change in the drag coefficient of the virus-particle assembly was not a simple sum of the drag coefficients of the individual components and the rate of particle-particle reaction was slower than would be predicted from the uncoupled particle hydrodynamics. The possibility of using diffusometry for sensing and proteomics applications is examined.  相似文献   

16.
The goal of this work was to increase the sensitivity of a UV–Vis spectrophotometer by decreasing the background noise and lengthening the optical path. A microphotometer has been modified to precisely select very small parts of a microfluidic channel pattern of a chip and to measure light absorbance on a magnified area of the selected part of the channel. The viability of combining a projection microscope and a spectrophotometer for external absorbance measurements on disposable PDMS chips was studied. Besides the external direct detection above a microfluidic channel, the optical pathlength was lengthened by detecting in the region of the perpendicular exit port. Increasing the cross-sectional area of the zone of irradiation improved the signal-to-noise ratio and the limits of detection (LOD).  相似文献   

17.
Electrochemical sensors based on chemical surface modification are very attractive because they combine high sensitivity of amperometry with new dimensions of selectivity and stability provided by the surface modifier. This review shows a few strategies employed to facilitate the detection, determination and monitoring of nitric oxide using polymer modified electrodes. Conducting and nonconducting polymer films and composite films are considered. The most significant achievements reached in this field, during the last decade, are critically reviewed. The collected data are also presented in three tables.  相似文献   

18.
This paper presents a fundamentally new approach for the manufacturing and the possible applications of lab on a chip devices, mainly in the form of disposable fluidic microchips for life sciences applications. The new technology approach is based on a novel microscale thermoforming of thin polymer films as core process. The flexibility not only of the semi-finished but partly also of the finished products in the form of film chips could enable future reel to reel processes in production but also in application. The central so-called 'microthermoforming' process can be surrounded by pairs of associated pre- and postprocesses for micro- and nanopatterned surface and bulk modification or functionalisation of the formed films. This new approach of microscale thermoforming of thin polymer film substrates overlaid with a split local modification of the films is called 'SMART', which stands for 'substrate modification and replication by thermoforming'. In the process, still on the unformed, plane film, the material modifications of the preprocess define the locations where later, then on the spatially formed film, the postprocess generates the final local modifications. So, one can obtain highly resolved modification patterns also on hardly accessible side walls and even behind undercuts. As a first application of the new technology, we present a flexible chip-sized scaffold for three dimensional cell cultivation in the form of a microcontainer array. The spatially warped container walls have been provided with micropores, cell adhesion micropatterns and thin film microelectrodes.  相似文献   

19.
Huang X  Ren J 《Electrophoresis》2005,26(19):3595-3601
In this paper we present a sensitive chemiluminescence (CL) detection of heme proteins coupled with microchip IEF. The detection principle was based on the catalytic effects of the heme proteins on the CL reaction of luminol-H2O2 enhanced by para-iodophenol. The glass microchip and poly(dimethylsiloxane) (PDMS)/glass microchip for IEF were fabricated using micromachining technology in the laboratory. The modes of CL detection were investigated and two microchips (glass, PDMS/glass) were compared. Certain proteins, such as cytochrome c, myoglobin, and horseradish peroxidase, were focused by use of Pharmalyte pH 3-10 as ampholytes. Hydroxypropylmethylcellulose was added to the sample solution in order to easily reduce protein interactions with the channel wall as well as the EOF. The focused proteins were transported by salt mobilization to the CL detection window. Cytochrome c, myoglobin, and horseradish peroxidase were well separated within 10 min on a glass chip and the detection limits (S/N=3) were 1.2x10(-7), 1.6x10(-7), and 1.0x10(-10) M, respectively.  相似文献   

20.
Garcia CD  Henry CS 《The Analyst》2004,129(7):579-584
Creatinine, creatine, and uric acid are three important compounds that are measured in a variety of clinical assays, most notably for renal function. Traditional clinical assays for these compounds have focused on the use of enzymes or chemical reactions. Electrophoretic microchips have the potential to integrate separation power of capillary electrophoresis with devices that are small, portable, and have the speed of conventional sensors. The development of a microchip CE system for the direct detection of creatinine, creatine, and uric acid is presented. The device uses pulsed amperometric detection (PAD) to detect the nitrogen-containing compounds as well as the easily oxidizable uric acid. Baseline separation of creatinine, creatine and uric acid was achieved using 30 mM borate buffer (pH = 9.4) in less than 200 s. Linear calibration curves were obtained with limits of detection of 80 microM, 250 microM and 270 microM for creatinine, creatine and uric acid respectively. An optimization of the separation conditions and a comparison of PAD with other amperometric detection modes is also shown. Finally, analysis of a real urine sample is presented with validation of creatinine concentrations using a clinical assay kit based on the Jaffé reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号