首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dryer used in the drying process of paper production is usually a rotating horizontal cylinder in which steam condenses. This study concerns some experiments and analyses of condensate flow and heat transfer in a dryer with a scraper.

A laminar film model and a solid film model are introduced for the theoretical analyses. In the former the condensate flow is assumed to be laminar. In the latter the condensate film is assumed to adhere to the cylinder wall. In the analysis with the laminar film model, the film thickness diverges at relatively slow rotations. A criterion for the critical condition at which the divergence commences is proposed. From the solid film model, analytical expressions can be derived for the film thickness and the heat transmission coefficient through the condensate film and the cylinder wall.

The experiments are conducted with an acrylic resin cylinder and a stainless steel cylinder. The experimental result on heat transmission agrees with the analytical result for the solid film model if a condensate film about 25 μm thick remains in spite of scraping.  相似文献   


2.
An integral analysis is made for laminar film condensation in a rotating paper drum with a scraper. The analysis includes the nonlinear inertial terms in the equation of motion, with the interface shear stress being considered. The results of numerical solutions show that the inertial terms cannot be neglected except in the cases of a very thin condensate film or a very large Froude number, that the condensation heat transfer will be, to some extent, enhanced by the inertial effect, and that the vapor shear at the vapor-liquid interface proves to be negligible. Distributions of the interface velocity and film thickness as well as heat transfer results are obtained and discussed. Included also in this paper is the investigation for transition of the condensate flow from steady state to unsteady one. Received on 6 December 1996  相似文献   

3.
In this study the influence of a thin hydrodynamic boundary layer on the heat transfer from a single circular cylinder in liquid metals having low Prandtl number (0.004–0.03) is investigated under isothermal and isoflux boundary conditions. Two separate analytical heat transfer models, viscous and inviscid, are developed to clarify the discrepancy between previous results. For both models, integral approach of the boundary layer analysis is employed to derive closed form expressions for the calculation of the average heat transfer coefficients. For an inviscid model, the energy equation is solved using potential flow velocity only whereas for a viscous model, a fourth-order velocity profile is used in the hydrodynamic boundary layer and potential flow velocity is used outside the boundary layer. The third-order temperature profile is used inside the thermal boundary layer for both models. It is shown that the inviscid model gives higher heat transfer coefficients whereas viscous flow model gives heat transfer results in a fairly good agreement with the previous experimental/numerical results.  相似文献   

4.
The laminar film boiling is analyzed by means of an integral procedure. The method treats the film boiling as a two phase boundary layer problem; thereby the effect of the interfacial shear on the heat transfer rate can be investigated. The problem is attacked by simultaneously solving the vapor and liquid boundary layer equations. An extensive comparison of the predicted results with the exact solutions substantiates the validity of the present integral procedure. Even the details of the velocity and temperature profiles turn out to be in close agreement with the exact solutions.  相似文献   

5.
A transient free convective boundary layer flow of micropolar fluids past a semi-infinite cylinder is analysed in the present study. The transformed dimensionless governing equations for the flow, microrotation and heat transfer are solved by using the implicit scheme. For the validation of the current numerical method heat transfer results for a Newtonian fluid case where the vortex viscosity is zero are compared with those available in the existing literature, and an excellent agreement is obtained. The obtained results concerning velocity, microrotation and temperature across the boundary layer are illustrated graphically for different values of various parameters and the dependence of the flow and temperature fields on these parameters is discussed. An increase in the vortex viscosity tends to increase the magnitude of microrotation and thus decreases the peak velocity of fluid flow. An increase in the vortex viscosity in micropolar fluids is shown to decrease the heat transfer rate.  相似文献   

6.
A theoretical analysis is presented which brings steady laminar film flow of power-law fluids within the framework of classical boundary layer theory. The upper part of the film, which consists of a developing viscous boundary layer and an external inviscid freestream, is treated separately from the viscous dominated part of the flow, thereby taking advantage of the distinguishing features of each flow region. It is demonstrated that the film boundary layer developing along a vertical wall can be described by a generalized Falkner-Skan type equation originally developed for wedge flow. An exact similarity solution for the velocity field in the film boundary layer is thus made available.Downstream of the boundary layer flow regime the fluid flow is completely dominated by the action of viscous shear, and fairly accurate solutions are obtained by the Von Karman integral method approach. A new form of the velocity profile is assumed, which reduces to the exact analytic solution for the fully-developed film. By matching the downstream integral method solution to the upstream generalized Falkner-Skan similarity solution, accurate estimates for the hydrodynamic entrance length are obtained. It is also shown that the flow development in the upstream region predicted by the approximate integral method closely corresponds to the exact similarity solution for that flow regime. An analytical solution of the resulting integral equation for the Newtonian case is compared with previously published results.  相似文献   

7.
The development of the wake velocity and turbulence profiles behind a cylindrical blunt based body aligned with a subsonic uniform stream was experimentally investigated as a function of the momentum thickness of the approaching boundary layer and the transfer of mass into the recirculating region. Measurements were made just outside of the recirculating region at distances of 1.5, 2 and 3 diameters downstream of the cylinder. Results indicate that, even at these short distances from the cylinder base, the velocity profiles are similar. They also show that the width of the wake increases with the thickness of the boundary layer while the velocity at the centerline decreases. Near wake mass transfer was found to alter centerline velocities while the width of the wake was not significantly altered. Wake centerline velocity development as a function of boundary layer thickness is presented for distances up to three diameters from the base. This work was supported in part by the ‘Xunta de Galicia’ under Project No. XUGA20611B93.  相似文献   

8.
This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.  相似文献   

9.
A study was made to see if it is possible to enhance the heat transfer in the downstream region of a backward-facing step, where heat transfer is normally deteriorated, by the insertion of a cylinder near the top corner of the step. Cylinder size and streamwise position of the cylinder were kept constant but the cross-stream position of the cylinder was changed in three steps. Results of the heat transfer experiment, flow visualization, and measurement of the averaged and fluctuating flow fields were reported. When the cylinder was mounted at a position, a little higher than the top surface of the step, a jet-like flow pattern emerged in the averaged velocity profile beneath the cylinder and the recirculating flow was intensified. Therefore, the velocity of recirculating flow near the wall is increased at some streamwise positions. Additionally, the velocity fluctuation was intensified not only in the shear layer between the jet-like flow and the recirculating flow regions but also in the near wall region, resulting in the effective augmentation of heat transfer in this case. Therefore, it is concluded that the mounting of a cylinder is effective in the enhancement of deteriorated heat transfer in the recirculating flow region, if its is mounted in a proper position.  相似文献   

10.
The results of the numerical modeling of heat transfer in flows over cubic cavities are presented. The effect of different parameters of the incident laminar flow, such as the disturbance frequency, the boundary layer thickness, and the main flow velocity, on the flow stability is investigated. It is shown that the integral heat flux considerably depends on the disturbance frequencies in the oncoming flow, the frequencies leading to heat transfer intensification being determined by the stability of the mixing layer between the cavity and the main flow. The calculated integral heat-transfer parameters are compared with experimental data. The calculated Reynolds-number dependence of the Nusselt number is found to be in good agreement with experiment.  相似文献   

11.
A numerical study has been conducted to examine the heat transfer from a metal foam-wrapped solid cylinder in cross-flow. Effects of the key parameters including the free stream velocity and characteristics of metal foam such as porosity, permeability, and form drag coefficient on heat and fluid flow are examined. Being a determining factor in pressure drop and heat transfer increment, the porous layer thickness is changed systematically to observe that there is an optimum layer thickness beyond which the heat transfer does not improve while the pressure drop continues to increase. This has been verified by the application of Bejan’s Intersection of Asymptotes method. Results have been compared to those of a finned-tube heat exchanger to observe much higher heat transfer rate with reasonable excess pressure drop leading to a higher area goodness factor for metal foam-wrapped cylinder.  相似文献   

12.
A method is proposed for calculating two-dimensional leading turbulent separation regions based on the use of integral relations of boundary layer theory and integral characteristics of a three-parameter family of locally similar velocity profiles. The method makes it possible to calculate the characteristics of a turbulent boundary layer, including friction and heat transfer, without separation of discontinuities and special regions and to do this in both attached and separated flow regions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 3, pp. 24–33, May–June, 1982.I thank V. N. Shmanenkov for interest in the work and L. V. Gogish for reading and discussing the draft.  相似文献   

13.
The paper considers heat transfer characteristics of thin film flow over a hot horizontal cylinder resulting from a cold vertical sheet of liquid falling onto the surface. The underlying physical features of the developing film thickness, velocity and temperature distributions have been illustrated by numerical solutions of high accuracy for large Reynolds numbers using the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained using the Pohlhausen integral momentum technique thus providing a basic confirmation of the validity of the results presented.  相似文献   

14.
The optimization of the drum structure is beneficial to improve the particle motion and mixing in rotary drums. In this work, two kinds of drum structures, Lacy cylinder drum (LC) and Lacy-lifters cylinder drum (LLC), are developed on the basic of cylinder drum to enhance the heat transfer area. The particle motion and mixing process are simulated by DEM method. Based on the grid independence and model validation, the contact number between particles and wall, particle velocity profile, thickness of active layer, particle exchange coefficient, particle concentration profile and mixing index are demonstrated. The influences of the drum structure and the operation parameters are further evaluated. The results show that the contact number between particles and wall is improved in LC and LLC compared to cylinder drum. The particle velocity in LC is higher than that in cylinder drum at high rotating speed, and the particle velocity of the particle falling region is significantly improved in LLC. Compared to cylinder drum and LC, the thickness of active layer in LLC is smaller, while the local particle mixing quality is proved to be the best in the active region. In addition, the particle exchange coefficients between static region and active region in the three drums are compared and LLC is found tending to weaken the particle flow. Besides, the fluctuations of particle concentration in the active region, static region, and boundary region are weakened in LLC, and the equilibrium state is reached earlier. In addition, the overall particle mixing performance in cylinder drum, LC and LLC is analyzed. The particle mixing performance in cylinder drum is the worst, while the difference in mixing quality of LC and LLC depends on the operation conditions.  相似文献   

15.
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.  相似文献   

16.
 This study aims to investigate numerically the laminar flow and heat transfer in a pseudoplastic non-Newtonian falling liquid film on a horizontal cylinder for the constant heat flux and isothermal boundary conditions. The inertia terms are taken into account. An implicit finite difference method is carried out to solve the governing boundary layer equations. The effects of operational parameters on the hydrodynamic and heat transfer characteristics are examined and discussed in detail. The results presented show that the local and average Nusselt numbers varies significantly as a function of the concentration of aqueous carboxymethylcellulose (CMC) solutions and the cylinder diameter. Higher concentration of aqueous CMC solutions generate larger heat transfer coefficients. Finally, a comparison with the experimental and numerical results available in the literature for Newtonian fluids shows clearly that the present analysis is reasonably accurate. Received on 29 March 2001 / Published online: 29 November 2001  相似文献   

17.
It is an investigation of turbulent film condensation on an isothermal cone. The present paper describes the eddy diffusivity of two turbulent models. And then it discusses the film thickness and heat transfer characteristics under the different turbulent models. The results show the mean heat transfer coefficient on two forms of eddy diffusivity, and there is a variation on the two models. Furthermore, the current results are compared with those generated by previous theoretical investigations. It is found that in high vapor velocity, the mean heat transfer was greater than that of the laminar flow theory. Under the high vapor velocity region, the eddy effect will be an important factor for the heat transfer of turbulent condensate film. Besides, in the low vapor velocity region, the eddy diffusivity seldom influences the heat transfer of condensate film.  相似文献   

18.
An analytical solution to the problem of condensation by natural convection over a thin porous substrate attached to a cooled impermeable surface has been conducted to determine the velocity and temperature profiles within the porous layer, the dimensionless thickness film and the local Nusselt number. In the porous region, the Darcy–Brinkman–Forchheimer (DBF) model describes the flow and the thermal dispersion is taken into account in the energy equation. The classical boundary layer equations without inertia and enthalpyterms are used in the condensate region. It is found that due to the thermal dispersion effect, the increasing of heat transfer is significant. The comparison of the DBF model and the Darcy–Brinkman (DB) one is carried out.  相似文献   

19.
In this paper experimental results are given concerning stationary heat and mass transfer in the laminar boundary layer of a vertical cylinder placed in still air. The combined effect is considered as well as the two separate effects. Measurements are carried out on heat transfer and evaporation of water. Results are in close agreement with the classical free convection boundary layer theory for a vertical flat plate, if only a small cylinder correction is applied.  相似文献   

20.
The axisymmetric laminar boundary layer flow along the entire length of a semi-infinite stationary cylinder under an accelerated free-stream is investigated. Considering flow at reduced dimensions, the boundary layer equations are developed with the conventional no-slip boundary condition for tangential velocity and temperature replaced by a linear slip-jump boundary condition. Asymptotic series solutions are obtained for the heat transfer coefficient in terms of the Nusselt number. These solutions correspond to prescribed values of the momentum and temperature slip coefficients and the index of acceleration. Heat transfer at both small and large axial distances is determined in the form of series solutions; whereas at intermediate distances, exact and interpolated numerical solutions are obtained. Using these results, the heat transfer along the entire cylinder wall is evaluated in terms of the parameters of acceleration and slip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号