首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Membrane binding of a doubly lipid modified heptapeptide from the C-terminus of the human N-ras protein was studied by Fourier transform infrared, solid-state NMR, and neutron diffraction spectroscopy. The 16:0 peptide chains insert well into the 1,2-dimyristoyl-sn-glycero-3-phosphocholine phospholipid matrix. This is indicated by a common main phase transition temperature of 21.5 degrees C for both the lipid and peptide chains as revealed by FTIR measurements. Further, (2)H NMR reveals that peptide and lipid chains have approximately the same chain length in the liquid crystalline state. This is achieved by a much lower order parameter of the 16:0 peptide chains compared to the 14:0 phospholipid chains. Finally, proton/deuterium contrast variation of neutron diffraction experiments indicates that peptide chains are localized in the membrane interior analogous to the phospholipid chains. In agreement with this model of peptide chain insertion, the peptide part is localized at the lipid-water interface of the membrane. This is revealed by (1)H nuclear Overhauser enhancement spectra recorded under magic angle spinning conditions. Quantitative cross-peak analysis allows the examination of the average location of the peptide backbone and side chains with respect to the membrane. While the backbone shows the strongest cross-relaxation rates with the phospholipid glycerol, the hydrophobic side chains of the peptide insert deeper into the membrane interior. This is supported by neutron diffraction experiments that reveal a peptide distribution in the lipid-water interface of the membrane. Concurring with these experimental findings, the amide protons of the peptide show strong water exchange as seen in NMR and FTIR measurements. No indications for a hydrogen-bonded secondary structure of the peptide backbone are found. Therefore, membrane binding of the C-terminus of the N-ras protein is mainly due to lipid chain insertion but also supported by interactions between hydrophobic side chains and the lipid membrane. The peptide assumes a mobile and disordered conformation in the membrane. Since the C-terminus of the soluble part of the ras protein is also disordered, we hypothesize that our model for membrane binding of the ras peptide realistically describes the membrane binding of the lipidated C-terminus of the active ras protein.  相似文献   

2.
The human N-ras protein binds to cellular membranes by insertion of two covalently bound posttranslational lipid modifications, which is crucial for its function in signal transduction and cell proliferation. Mutations in ras may lead to unregulated cell growth and eventually cancer, making it an important therapeutic target. Here we have investigated the molecular details of the membrane binding mechanism. A heptapeptide derived from the C-terminus of the human N-ras protein was synthesized including two hexadecyl modifications. Solid-state 2H NMR was used to determine the packing and molecular dynamics of the ras lipid chains as well as the phospholipid matrix. Separately labeling the chains of the peptide and the phospholipids with 2H enabled us to obtain atomically resolved parameters relevant to their structural dynamics. While the presence of ras only marginally affected the packing of DMPC membranes, dramatically lower order parameters (S(CD)) were observed for the ras acyl chains indicating modified packing properties. Essentially identical projected lengths of the 16:0 ras chains and the 14:0 DMPC chains were found, implying that the polypeptide backbone is located at the lipid-water interface. Dynamical properties of both the ras and phospholipid chains were determined from spin-lattice 2H relaxation (R1Z) measurements. Plots of R1Z rates versus the corresponding squared segmental order parameters revealed striking differences. We propose the ras peptide is confined to microdomains containing DMPC chains which are in exchange with the bulk bilayer on the 2H NMR time scale (approximately 10(-5) s). Compared to the host DMPC matrix, the ras lipid modifications are extremely flexible and undergo relatively large amplitude motions. It is hypothesized that this flexibility is a requirement for the optimal anchoring of lipid-modified proteins to cellular membranes.  相似文献   

3.
We implemented molecular dynamics simulations of the 13-residue antimicrobial peptide indolicidin (ILPWKWPWWPWRR-NH2) in dodecylphosphocholine (DPC) and sodium dodecyl sulfate (SDS) micelles. In DPC, a persistent cation-pi interaction between TRP11 and ARG13 defined the structure of the peptide near the interface. A transient cation-pi interaction was also observed between TRP4 and the choline group on DPC lipids. We also implemented simulation of a mutant of indolicidin in the DPC micelle where TRP11 was replaced by ALA11. As a result of the mutation, the boat-shaped conformation is lost and the structure becomes significantly less defined. On the basis of this evidence, we argue that cation-pi interactions determine the experimentally measured, well-defined boat-shaped structure of indolicidin. In SDS, the lack of such interactions and the electrostatic binding of the terminal arginine residues to the sulfate groups leads to an extended peptide structure. To the best of our knowledge, this is the first time that a cation-pi interaction between peptide side chains has been shown to stabilize the structure of a small antimicrobial peptide. The simulations are in excellent agreement with available experimental measurements: the backbone of the peptide is more ordered in DPC than in SDS; the tryptophan side chains pack against the backbone in DPC and point away from the backbone in SDS; the rms fluctuation of the peptide backbone and peptide side chains is greater in SDS than in DPC; and the peptide backbone order parameters are higher in DPC than in SDS.  相似文献   

4.
A molecular dynamics simulation of the folding of a short alanine-based helical peptide of 17 residues with three Glu...Lys (i, i + 4) salt bridge pairs, referred to as the AEK17 peptide, was carried out. The simulation gave an estimated simulation folding time of 2.5 ns, shorter than 12 ns for an alanine-based peptide of 16 residues with three Lys residues only, referred to as the AK16 peptide, simulated previously. After folded, the AEK17 peptide had a helical content of 77%, in excellent agreement with the experimentally determined value of 80%. An examination of the folding pathways of AEK17 indicated that the peptide proceeded via three-turn helix conformations more than the helix-turn-helix conformation in the folding pathways. An analysis of interactions indicated that the formation of hydrogen bonds between Lys residue side chains and backbone carbonyls is a major factor in the abundant conformation of the three-turn helix intermediate. The substitution of three Ala with Glu residues reduces the extent of hydrophobic interaction in alanine-based AK peptides with the result that the breaking of the interactions of Lys epsilon-NH3+(side chain)...C=O(backbone) is a major activation action for the AEK17 to achieve a complete fold, in contrast to the AK16 peptide, in which breaking non-native hydrophobic interaction is the rate-determining step.  相似文献   

5.
We have carried out a 40-ns all-atom molecular dynamics simulation of the helical antimicrobial peptide ovispirin-1 (OVIS) in a zwitterionic diphosphocholine (DPC) micelle. The DPC micelle serves as an economical and effective model for a cellular membrane owing to the presence of a choline headgroup, which resembles those of membrane phospholipids. OVIS, which was initially placed along a micelle diameter, diffuses out to the water-DPC interface, and the simulation stabilizes to an interface-bound steady state in 40 ns. The helical content of the peptide marginally increases in the process. The final conformation, orientation, and the structure of OVIS are in excellent agreement with the experimentally observed properties of the peptide in the presence of lipid bilayers composed of 75% zwitterionic lipids. The amphipathic peptide binds to the micelle with its hydrophobic face buried in the micellar core and the polar side chains protruding into the aqueous phase. There is overwhelming evidence that points to the significant and indispensable participation of hydrophobic residues in binding to the zwitterionic interface. The simulation starts with a conformation that is unbiased toward the final experimentally known binding state of the peptide. The ability of the model to reproduce experimental binding states despite this starting conformation is encouraging.  相似文献   

6.
The dynamics of an antimicrobial molecule (end-only oligo(p-phenylene ethynylene) or EO-OPE-1 (C3)) interacting with a model bacterial membrane is simulated using all-atom molecular dynamics. It is found that the molecule spontaneously adheres to the membrane at the membrane?Cwater interface, but no insertion into the bilayer was observed within the nanosecond simulation time. However, when the simulations start from an inserted configuration, this molecule aligns with the lipid molecules in the membrane and interacts strongly through electrostatic interactions with the anionic phosphoryl groups of the lipid molecules. Due to the hydrophobic mismatch between the molecule and lipids, the inserted molecule induces the deformation of the membrane in the form of local thinning. When more than one molecule were inserted, self-assembling was observed on a nanosecond scale. However, no transmembrane pore formation was observed, due presumably to the hydrophobic backbone of the molecule. Implications in the biocidal action of this molecule are discussed.  相似文献   

7.
Many proteins involved in signal transduction are equipped with covalently attached lipid chains providing a hydrophobic anchor targeting these molecules to membranes. Despite the considerable biological significance of this membrane binding mechanism for 5-10% of all cellular proteins, to date very little is known about structural and dynamical features of lipidated membrane binding domains. Here we report the first comprehensive study of the molecular dynamics of the C-terminus of membrane-associated full-length lipidated Ras protein determined by solid-state NMR. Fully functional lipid-modified N-Ras protein was obtained by chemical-biological synthesis ligating the expressed water soluble N-terminus with a chemically synthesized (2)H or (13)C labeled lipidated heptapeptide. Dynamical parameters for the lipid chain modification at Cys 181 were determined from static (2)H NMR order parameter and relaxation measurements. Order parameters describing the amplitude of motion in the protein backbone and the side chain were determined from site-specific measurements of (1)H-(13)C dipolar couplings for all seven amino acids in the membrane anchor of Ras. Finally, the correlation times of motion were determined from temperature dependent relaxation time measurements and analyzed using a modified Lipari Szabo approach. Overall, the C-terminus of Ras shows a versatile dynamics with segmental fluctuations and axially symmetric overall motions on the membrane surface. In particular, the lipid chain modifications are highly flexible in the membrane.  相似文献   

8.
Intermolecular NOE experiments have been used to explore the interactions of water and ethanol molecules in 35% ethanol/65% water (v/v) with the octapeptide hormone [val (5)]angiotensin II at temperatures from 0 to 25 degrees C. Magnetic dipole-dipole cross relaxation terms sigma(HH)(NOE) and sigma(HH)(ROE) for interaction of both solvent components suggest that ethanol molecules interact with the peptide backbone atoms strongly enough to associate for times comparable to the rotational correlation time of the peptide; comparison of observed ROE and NOE cross relaxation terms indicate that lifetimes of these interactions are of the order 0.4 ns at 5 degrees C. Formation of such peptide-ethanol complexes can also account for larger-than-expected values of the cross relaxation terms at higher temperatures. Alternative explanations of the observations reported are shown to be unlikely, primarily because they require unreasonable and highly localized concentrations of the ethanol near the peptide. Side chains of the peptide appear to experience no unusual interactions with ethanol. Cross relaxation terms for water-peptide backbone interactions indicate long-lived interactions of water with the backbone atoms although the nonpolar side chains of the peptide (Val3, Val5, Pro7, and possibly Phe8) do not interact in any specific way with water molecules. Cross relaxation terms for protons of the polar (Tyr4 and His6) side chains may reflect strong interactions with water, but analysis of these is confounded by solvent proton exchange and possible spin diffusion effects.  相似文献   

9.
An all-atom molecular dynamics simulation of rhodopsin in a membrane environment has been carried out with lipid composition similar to that of the retinal membrane. The initial conformation of the protein was taken from the X-ray crystallographic structure (1F88), while those of the lipids came from a previous molecular dynamics simulation. During the course of the 12.5 ns simulation, the initially randomly placed lipids adopt an anisotropic solvation structure around the protein. The lipids, having one saturated stearic acid chain and one polyunsaturated docosohexaenoic acid chain with a zwitterionic phosphatidylcholine headgroup, arrange themselves to maximize contact between the polyunsaturated chain and the protein surface. This organization is driven by energetically favorable interactions between the transmembrance helices and the docosohexaenoyl chains that are largely of the van der Waals type. These observations are consistent with various experimental studies on rhodopsin and other G-protein coupled receptors and with the picture of extreme flexibility in polyunsaturated fatty acid chains that has arisen from recent NMR and computational work.  相似文献   

10.
Two different high-resolution structures recently have been proposed for the membrane-spanning gramicidin A channel: one based on solid-state NMR experiments in oriented phospholipid bilayers (Ketchem, R. R.; Roux, B.; Cross, T. A. Structure 1997, 5, 1655-1669; Protein Data Bank, PDB:1MAG); and one based on two-dimensional NMR in detergent micelles (Townsley, L. E.; Tucker, W. A.; Sham, S.; Hinton, J. F. Biochemistry 2001, 40, 11676-11686; PDB:1JNO). Despite overall agreement, the two structures differ in peptide backbone pitch and the orientation of several side chains; in particular that of the Trp at position 9. Given the importance of the peptide backbone and Trp side chains for ion permeation, we undertook an investigation of the two structures using molecular dynamics simulation with an explicit lipid bilayer membrane, similar to the system used for the solid-state NMR experiments. Based on 0.1 micros of simulation, both backbone structures converge to a structure with 6.25 residues per turn, in agreement with X-ray scattering, and broad agreement with SS backbone NMR observables. The side chain of Trp 9 is mobile, more so than Trp 11, 13, and 15, and undergoes spontaneous transitions between the orientations in 1JNO and 1MAG. Based on empirical fitting to the NMR results, and umbrella sampling calculations, we conclude that Trp 9 spends 80% of the time in the 1JNO orientation and 20% in the 1MAG orientation. These results underscore the utility of molecular dynamics simulations in the analysis and interpretation of structural information from solid-state NMR.  相似文献   

11.
A molecular dynamics simulation of a partially fluorinated phospholipid bilayer has been carried out to understand the effects of fluorination of the hydrophobic chains on the structure and water permeability across the membrane. Fluorocarbon chains typically have an all-trans conformation, showing a highly ordered structure in the membrane core compared to ordinary hydrocarbon chains. The free energy profiles of water across the bilayers were successfully estimated by a revised cavity insertion Widom method. The fluorinated bilayer showed a higher free energy barrier than an ordinary nonfluorinated lipid bilayer by about 1.2 kcal/mol, suggesting a lower water permeability of the fluorinated bilayer membrane. A cavity distribution analysis elucidated the reduced free volume in the fluorinated membrane due to the neatly packed chains, which should account for the higher free energy barrier.  相似文献   

12.
H-ras protein in a bilayer: interaction and structure perturbation   总被引:1,自引:0,他引:1  
Ras GTPases become functionally active when anchored to membranes by inserting their lipid modified side chains. Their role in cell division, development, and cancer has made them targets of extensive research efforts, yet the mechanism of membrane insertion and the structure of the resulting complex remain elusive. Recently, the structure of the full-length H-ras protein in a DMPC bilayer has been computationally characterized. Here, the atomic interactions between the H-ras membrane anchor and the DMPC bilayer are investigated in detail. We find that the palmitoylated cysteines and Met182 have dual contributions to membrane affinity: hydrogen bonding by their amides and van der Waals interaction by their hydrophobic side chains. The polar side chains help maintain the orientation of the anchor. Although the overall structure of the bilayer is similar to that of a pure DMPC, there are localized perturbations. These perturbations depend on the insertion depth and backbone localization of the anchor, which in turn is modulated by the catalytic domain and the linker. The pattern of anchor amide-DMPC phosphate/carbonyl hydrogen bonds and the flexibility of Palm184 are important in discriminating between different modes of ras-DMPC interactions. The results provide structural arguments in support of the proposed participation of ras in the organization of membrane nanoclusters.  相似文献   

13.
Hydrophobic mismatch between the hydrophobic length of membrane proteins and hydrophobic thickness of membranes is a crucial factor in controlling protein function and assembly. We combined fluorescence with circular dichroism(CD) and attenuated total reflection infrared(ATR-IR) spectroscopic methods to investigate the behaviors of the peptide and lipids under hydrophobic mismatch using a model peptide from the fourth transmembrane domain of natural resistance-associated macrophage protein 1(Nramp1), the phosphatidylcholines(PCs) and phosphatidylglycerols(PGs) with different lengths of acyl chains(14:0, 16:0 and 18:0). In all PG lipid membranes, the peptide forms stable a-helix structure, and the helix axis is parallel to lipid chains. The helical span and orientation hardly change in varying thickness of PG membranes, while the lipid chains can deform to accommodate to the hydrophobic surface of embedded peptide. By comparison, the helical structures of the model peptide in PC lipid membranes are less stable. Upon incorporation with PC lipid membranes, the peptide can deform itself to accommodate to the hydrophobic thickness of lipid membranes in response to hydrophobic mismatch. In addition, hydrophobic mismatch can increase the aggregation propensity of the peptide in both PC and PG lipid membranes and the peptide in PC membranes has more aggregation tendency than that in PG membranes.  相似文献   

14.
A variety of biomolecules mediate physiological processes by inserting and reorganizing in cell membranes, and the thermodynamic forces responsible for their partitioning are of great interest. Recent experiments provided valuable data on the free energy changes associated with the transfer of individual amino acids from water to membrane. However, a complete picture of the pathways and the associated changes in energy of peptide insertion into a membrane remains elusive. To this end, computational techniques supplement the experimental data with atomic-level details and shed light on the energetics of insertion. Here, we employed the technique of umbrella sampling in a total 850 ns of all-atom molecular dynamics simulations to study the free energy profile and the pathway of insertion of a model hexapeptide consisting of a tryptophan and five leucines (WL5). The computed free energy profile of the peptide as it travels from bulk solvent through the membrane core exhibits two minima: a local minimum at the water-membrane interface or the headgroup region and a global minimum at the hydrophobic-hydrophilic interface close to the lipid glycerol region. A rather small barrier of roughly 1 kcal mol (-1) exists at the membrane core, which is explained by the enhanced flexibility of the peptide when deeply inserted. Combining our results with those in the literature, we present a thermodynamic model for peptide insertion and aggregation which involves peptide aggregation upon contact with the membrane at the solvent-lipid headgroup interface.  相似文献   

15.
Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an α-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.  相似文献   

16.
Reliable computer simulations of complex biological environments such as integral membrane proteins with explicit water and lipid molecules remain a challenging task. We propose a modification of the standard generalized Born theory of homogeneous solvent for modeling the heterogeneous dielectric environments such as lipid/water interfaces. Our model allows the representation of biological membranes in the form of multiple layered dielectric regions with dielectric constants that are different from the solute cavity. The proposed new formalism is shown to predict the electrostatic component of solvation free energy with a relative error of 0.17% compared to exact finite-difference solutions of the Poisson equation for a transmembrane helix test system. Molecular dynamics simulations of melittin and bacteriorhodopsin are carried out and performed over 10 ns and 7 ns of simulation time, respectively. The center of melittin along the membrane normal in these stable simulations is in excellent agreement with the relevant experimental data. Simulations of bacteriorhodopsin started from the experimental structure remained stable and in close agreement with experiment. We also examined the free energy profiles of water and amino acid side chain analogs upon membrane insertion. The results with our implicit membrane model agree well with the experimental transfer free energy data from cyclohexane to water as well as explicit solvent simulations of water and selected side chain analogs.  相似文献   

17.
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid–peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.  相似文献   

18.
A molecular dynamics simulation of the folding of conantokin-T (con-T), a short helical peptide with 5 helical turns of 21 amino acids with 10 charged residues, was carried out to examine folding pathways for this peptide and to predict the folding rate. In the 18 trajectories run at 300 K, 16 trajectories folded, with an averaged folding time of approximately 50 ns. Two trajectories did not fold in up to 200 ns simulation. The folded structure in folded trajectories is in good agreement with experimental structure. An analysis of the trajectories showed that, at the beginning of a few nanoseconds, helix formation started from residues 5-9 with assistance of a hydrophobic clustering involving Tyr5, Met8, and Leu9. The peptide formed a U-shape mainly due to charge-charge interactions between charged residues at the N- and C-terminus segments. In the next approximately 10 ns, several nonnative charge-charge interactions were broken and nonnative Gla10-Lys18 (this denotes a salt bridge between Gal10 and Lys18) and/or Gla10-Lys19 interactions appeared more frequently in this folding step and the peptide became a fishhook J-shape. From this structure, the peptide folded to the folded state in 7 of all 16 folded trajectories in approximately 15 ns. Alternatively, in approximately 30 ns, the con-T went to a conformation in an L-shape with 4 helical turns and a kink at the Arg13 and Gla14 segment in the other 9 trajectories. Con-T in the L-shape then required another approximately 15 ns to fold into the folded state. In addition, in overall folding times, the former 7 trajectories folded faster with the total folding times all shorter than 45 ns, while the latter 9 trajectories folded at a time longer than 45 ns, resulting in an average folding time of approximately 50 ns. Two major folding intermediates found in 2 nonfolded trajectories are stabilized by charge clusters of 5 and 6 charged residues, respectively. With inclusion of friction and solvent-solvent interactions, which were ignored in the present GB/SA solvation model, the folding time obtained above should be multiplied by a factor of 1.25-1.7 according to a previous, similar simulation study. This results in a folding time of 65-105 ns, slightly shorter than the folding time of 127 ns for an alanine-based peptide of the same length. This suggests that the energy barrier of folding for this type of peptides with many charged residues is slightly lower than alanine-based helical peptides by less than 1 kcal/mol.  相似文献   

19.
Octyl glucoside (OG) is a detergent widely employed in structural and functional studies of membrane proteins. To better understand the nature of protein-OG interactions, molecular dynamics simulations (duration 10 ns) have been used to explore an alpha-helical membrane protein, GlpF, in OG micelles and in DMPC bilayers. Greater conformational drift of the extramembraneous protein loops, from the initial X-ray structure, is seen for the GlpF-OG simulations than for the GlpF-DMPC simulation. The mobility of the transmembrane alpha-helices is approximately 1.3x higher in the GlpF-OG than the GlpF-DMPC simulations. The detergent is seen to form an irregular torus around the protein. The presence of the protein leads to a small perturbation in the behavior of the alkyl chains in the OG micelle, namely an approximately 15% increase in the trans-gauche(-)-gauche(+) transition time. Aromatic side chains (Trp, Tyr) and basic side chains (Arg, Lys) play an important role in both protein-detergent (OG) and protein-lipid (DMPC) interactions.  相似文献   

20.
Naproxen and relafen, as nonsteroidal antiinflammatory drugs, were simulated in neutral and charged forms and their effects on a lipid bilayer membrane were investigated by molecular dynamics simulation using Groningen machine for chemical simulations software (GROMACS). Simulation of 10 systems was performed, which included different dosages of the drug molecules, naproxen and Relafen, in charged and neutral forms, and a mixture of naproxen and Relafen in neutral forms. The effects of the mixture and the individual drugs' dosages on membrane properties, such as electrostatic potential, order parameter, diffusion coefficients, and hydrogen bond formation, were analyzed. Hydration of the drugs in the membrane system was investigated using radial distribution function analysis. Using fully hydrated dimyristoylphosphatidylcholine (DMPC) as a reference system, 128 lipid molecules and water molecules were simulated exclusively, and the same simulation technique was performed on 10 other systems, including drug mixtures and a DMPC membrane. Angular distributions of lipid chains of the membrane were calculated, and the effects of the drug insertion and chain orientation in the membrane were evaluated. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号