首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
渣油FCC改性Y沸石研究   总被引:3,自引:0,他引:3  
研究了不同方法和不同程度脱铝对Y型沸石浸镧老化后的结构性质和催化裂化性能的影响。结果表明,氟硅酸铵脱铝补硅和水热处理两个步骤联合,所得样品骨架铝分布均匀,通过控制脱铝程度可更有效地抑制结焦并保持催化裂化高活性;草酸脱铝和水热处理联合,所得样品二次孔结构发达,具有更好的渣油裂化生成液态低碳烃选择性。  相似文献   

2.
Acid leaching of vermiculite is an interesting procedure to prepare high surface area porous silica. Thermal behaviour of unground and ground vermiculite leached with HCl solutions has been studied by TG, DTA, ETA and high temperature XRD. Important differences have been observed in the thermal behaviour of unground and ground vermiculite after the acid treatments. Thus, for the acid-treated unground vermiculite, dehydrated vermiculite, enstatite and cristobalite were formed during the heating, while for the acid-treated ground vermiculite only iron oxides and cristobalite phases were observed. Structural modifications due to acid treatment were responsible for changes in the transport properties determined by ETA for the vermiculite samples.  相似文献   

3.
A novel catalyst with strong acid sites based on carbon/silica composite has been synthesized through one-pot hydrothermal carbonization of hydroxyethylsulfonic acid, glucose and tetraethyl orthosilicate (TEOS). The novel solid acid showed an acidity of 2.1 mmol/g, much higher than that of traditional solid acids such as Nafion and Amberlyst-15 (0.8 mmol/g). The catalytic activity of the solid acid was investigated in the acetalization and dimerization of α-methylstyrene. The results showed that the novel solid acid was very efficient for both hydrophilic and hydrophobic acid-catalyzed reactions. Because of the high acidity and catalytic activity the novel solid acid based on carbon/silica composite is a promising catalyst for the processes in green chemistry.  相似文献   

4.
We report studies of the effect of hydrothermal treatment on physical properties such as crystalline phase, size, and morphology of nanosized cadmium sulfide (CdS) particles. CdS precipitates have been synthesized by the reaction of Cd(NO(3))(2) with Na(2)S at room temperature. These CdS precipitates have been hydrothermally treated in the range 120-240 degrees C with variation of the treatment time. The effects of acid catalysts and other additives were also investigated. The particles prepared were characterized by XRD, TEM, and BET methods. With increased hydrothermal treatment temperature and time, crystallization from amorphous to crystalline form, cubic or hexagonal, and an increase of particle size occurred. CdS particles of well-developed hexagonal form were obtained at a hydrothermal treatment temperature of 240 degrees C; the primary hexagonal grain size was on the order of 20-30 nm. The addition of an acid catalyst, HCl, or of Cd(NO(3))(2) into the precipitate sol promoted crystal growth and phase transformation during the hydrothermal treatment, but another additive, Na(2)S, showed the opposite trend. It appears that hydrothermal treatment combined with proper additives could be an effective method for preparation of nanosize crystalline CdS particles. Copyright 2001 Academic Press.  相似文献   

5.
《Comptes Rendus Chimie》2015,18(10):1134-1142
Pharmaceuticals, personal care products and endocrine disruptors demonstrate huge potential to cause adverse ecological health effects at very low concentration in aquatic environment. There is a need to improve current purification technologies used in sewage and drinking-water treatment plants. This article aims at providing new insights into the recent development of natural and modified clay-based sorbents for the removal of aqueous contaminants such as pharmaceuticals and personal care products. The removal of six widely used pharmaceuticals: ibuprofen, diclofenac, ketoprofen, carbamazepine, as well as endocrine disrupting chemicals – bisphenol A and a bactericidal agent, triclosan – was examined by sorption onto eight adsorbents. Sorption was performed using natural and modified clay minerals – montmorillonite (Mt), vermiculite (VER), bentonite (B), kaolinite (K), commercial acid activated montmorillonites K10 and K30, and two carbonaceous-mineral nanocomposites, MtG5%T, BAlG3%C. This study showed that among the tested natural clays, vermiculite is the most promising sorbent for the removal of pharmaceuticals in purification processes. Among the modified clay minerals, the best results were achieved for carbonaceous bentonite and two acid activated montmorillonites K10 and K30. However, the removal of acidic pharmaceuticals on montomorillonite K10 and carbonaceous bentonite was strongly dependent on the pH value. In the case of vermiculite and acid-modified montmorillonite K30, the sorption of the selected compounds was not significantly affected by pH, which is crucial in wastewater treatment. The sorption constant divided by the specific surface area (Kd/A) is proposed to assess whether the surface area or chemical properties of the materials control the sorption process. Kd/A values were relatively high in the case of vermiculite, so it should be noticed that individual and specific surface properties of vermiculite were of crucial importance for sorption.  相似文献   

6.
Catalysts based on pillared clays with Zr and/or Al and Ce–Zr and/or Al polycations have been synthesized from a Tunisian bentonite and tested in catalytic oxidation of phenol at 298 K. The Zr-pillared clay showed higher activity than the Al-one in phenol oxidation. Mixed Zr–Al pillars lead to an enhancement of the catalytic activity due to the modification of the zirconium properties. The clays modified with Ce showed high conversions of phenol and TOC thus showing to be very selective towards the formation of CO2 and H2O.  相似文献   

7.
Several identification techniques have been used to study the effect of the preparation method of dealuminated Y zeolite on catalyst loading. In this paper, NaY zeolite was dealuminated by chemical operation with ethylenediaminetetraacetic acid (H4EDTA) treatment. In this method, extra-framework aluminum species removed from the supercage of zeolite and therefore increases the Si/Al ratio and pore volume. Consequently, the loading of the molybdophosphoric acid (MPA) in the supercage of zeolite is increases (0.1 g/g equal 0.049 mmol/g support) in EDTA treatment (MPA-MDAZY) in comparison with (0.0875 g/g equal 0.043 mmol/g support) in hydrothermal method (MPA-DAZY). These results were also confirmed by XRF, AAS, FTIR, SEM, BET, XRD and WDX analysis. Reducing of the reaction time and increasing of the catalytic activity of EDTA treatment toward hydrothermal method can be related to the high catalyst loading based on removing of extra-framework aluminum. The catalytic activity of two catalysts has been compared in the xanthenes synthesis reactions.  相似文献   

8.
Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH(3)Cl ions forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. n-Propyl NH(3)Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligomerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.  相似文献   

9.
The adsorption and the desorption of acetonitrile over several different inorganic solids (such as silicas, aluminas, modified aluminas, silica-aluminas, metal oxides, protonic zeolites, alkali-metal zeolites, and clays) have been investigated by IR spectroscopy. Different kinds of interactions (weak to strong hydrogen-bonding, coordination on Lewis acid sites, different kinds of surface chemical reactions) have been observed. The temperature needed for acetonitrile desorption from these solids has also been determined. Silicas and alkali metal zeolites have been found to allow molecular adsorption without reactivity and to allow desorption in mild conditions.  相似文献   

10.
Vermiculite is a natural mineral. In this study, vermiculite and acid-activated vermiculite was used as a solid acid catalyst for the hydrolysis of cellulose in water. The catalysts were characterized by XRD, FT-IR, and BET. The effects of time, temperature, mass ratio and water amount on the reaction were investigated in the batch reactor. The results showed that the highest total reducing sugars (TRS) yield of 40.1% could be obtained on the vermiculite activated by 35 (wt)% H2SO4 with the mass ratio of catalyst to cellulose of 0.18 and water to cellulose of 16 at 478 K for 3.5 h. The acid-activated vermiculite was a stable catalyst through calcination at 628 K and the yield of TRS decreased to 36.2% after three times reuse. The results showed that the crystal structure of vermiculite was destroyed and the surface -OH groups increased after the acid treatment. However, the synergistic effect of a strongly electrostatic polarization and Brönsted acid was responsible for the efficient conversion of cellulose. The mechanism of cellulose hydrolysis on the acid-activated vermiculite was suggested. This work provides a promising strategy to design an efficient solid catalyst for the cellulose hydrolysis, and expands the use of vermiculite in a new field.  相似文献   

11.
Nanosized anatase (< or = 10 nm), rutile (< or = 10 nm), and brookite (approximately 70 nm) titania particles have been successfully synthesized via sonication and hydrothermal methods. Gold was deposited with high dispersion onto the surfaces of anatase, rutile, brookite, and commercial titania (P25) supports through a deposition-precipitation (D-P) process. All catalysts were exposed to an identical sequence of treatment and measurements of catalytic CO oxidation activity. The as-synthesized catalysts have high activity with concomitant Au reduction upon exposure to the reactant stream. Mild reduction at 423 K produces comparably high activity catalysts for every support. Deactivation of the four catalysts was observed following a sequence of treatments at temperatures up to 573 K. The brookite-supported gold catalyst sustains the highest catalytic activity after all treatments. XRD and TEM results indicate that the gold particles supported on brookite are smaller than those on the other supports following the reaction and pretreatment sequences.  相似文献   

12.
Layered double hydroxides — multifunctional nanomaterials   总被引:1,自引:0,他引:1  
Layered double hydroxides (LDH’s), also known as anionic clays, are lamellar inorganic solids. The structure of most of them corresponds to that of mineral hydrotalcite, consisting of brucite-like hydroxide sheets, where partial substitution of trivalent or divalent cations results in a positive sheet charge compensated by reversibly exchangeable anions within interlayer galleries. These layered materials have good intercalation properties capturing inorganic and organic ions and they are promising materials for a large number of practical applications, both for direct preparation and for after thermal treatment.  相似文献   

13.
用水热法合成出两种不同镓含量的镓皂石,并用羟基铝低聚物对其进行了交联。对其表面酸性的考察发现,样品的酸量随嫁含量的增加而增大;样品均含有B酸和L酸中心,交联样品的B酸中心比交联前少。对样品催化性能的研究发现,催化活性与镓含量及酸量呈顺变关系。  相似文献   

14.
《Comptes Rendus Chimie》2016,19(10):1247-1253
High surface area mesoporous silica based catalysts have been prepared by a simple hydrolysis/sol–gel process without using any organic template and hydrothermal treatment. A controlled hydrolysis of ethyl silicate-40, an industrial bulk chemical, as a silica precursor, resulted in the formation of very high surface area (719 m2/g) mesoporous (pore size 67 Å and pore volume 1.19 cc/g) silica. The formation of mesoporous silica has been correlated with the polymeric nature of the ethyl silicate-40 silica precursor which on hydrolysis and further condensation forms long chain silica species which hinders the formation of a close condensed structure thus creating larger pores resulting in the formation of high surface mesoporous silica. Ethyl silicate-40 was used further for preparing a solid acid catalyst by supporting molybdenum oxide nanoparticles on mesoporous silica by a simple hydrolysis sol–gel synthesis procedure. The catalysts showed very high acidity as determined by NH3-TPD with the presence of Lewis as well as Brønsted acidity. These catalysts showed very high catalytic activity for esterification; a typical acid catalyzed organic transformation of various mono- and di-carboxylic acids with a range of alcohols. The in situ formed silicomolybdic acid heteropoly-anion species during the catalytic reactions were found to be catalytically active species for these reactions. Ethyl silicate-40, an industrial bulk silica precursor, has shown a good potential for its use as a silica precursor for the preparation of mesoporous silica based heterogeneous catalysts on a larger scale at a lower cost.  相似文献   

15.
采用低温水热合成法制备了碳纸基底的SnO2气体扩散电极(SnO2/GDE), 并对其物化特性与催化还原CO2产甲酸性能进行了研究. 扫描电子显微镜、 X射线衍射及X射线光电子能谱表征结果表明, 在60, 75, 100 ℃下制备的催化剂均为分散性良好的纳米SnO2粉体, 其粒径分别为7.9, 11.8和12.9 nm. 循环伏安、 线性扫描伏安和电化学交流阻抗测试结果显示电极均具有优异的电催化活性, 其电化学活性表面积分别为150, 470, 240 cm 2, 通过等效电路拟合后电阻分别为8.5, 3.9, 6.6 Ω·cm 2. 在-1.8 V(vs. SCE)电位下电解, 通入电量500 C时, 电极都具有较高电催化还原CO2产甲酸性能, 而75 ℃下制备的电极性能最佳, 产甲酸电流密度为22.8 mA/cm 2 , 产甲酸法拉第效率高达93.5%; 该电极经过20 h长时间电解后, 产甲酸电流密度可维持在12.8 mA/cm 2 , 产甲酸法拉第效率稳定在约65%.  相似文献   

16.
以聚乙烯醇(PVA)为支撑前体合成出改性的铝交联蒙脱土与铝交联累托土。采用XRD、N2低温吸附脱附法、IR等手段对它们进行了表征,并研究了它们在不同时间与温度条件下的水蒸汽减活动力学。研究结果表明,PVA的改性有助于铝交联粘土层间距与比表面积的增大及热稳定性与水热稳定性的提高,粘土基质对其热稳定性与水热稳定性有显著影响,该类催化材料的水蒸汽减活动力学遵循一级衰减反应方程式,其减活速率常数与温度的函数关系可用一个指数函数的经验式表示。  相似文献   

17.
Recent work shows a correlation between chiral asymmetry in non-terrestrial amino acids extracted from the Murchison meteorite and the presence of hydrous mineral phases in the meteorite [D. P. Glavin and J. P. Dworkin, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 5487-5492]. This highlights the need for sensitive experimental tests of the interactions of amino acids with clay minerals together with high level computational work. We present here the results of in situ neutron scattering experiments designed to follow amino acid adsorption on an exchanged, 1-dimensionally ordered n-propyl ammonium vermiculite clay. The vermiculite gel has a (001) d-spacing of order 5 nm at the temperature and concentration of the experiments and the d-spacing responds sensitively to changes in concentration, temperature and electronic environment. The data show that isothermal addition of D-histidine or L-histidine solutions of the same concentration leads to an anti-osmotic swelling, and shifts in the d-spacing that are different for each enantiomer. This chiral specificity, measured in situ, in real time in the neutron beam, is of interest for the question of whether clays could have played an important role in the origin of biohomochirality.  相似文献   

18.
An organo-saponite clay containing intercalated cetyltrimethylammonium (CTA(+)) cations was synthesized by an efficient one-step hydrothermal method and was compared with a CTA-exchanged saponite prepared by a classical postsynthesis intercalation route. In both hybrid samples, surfactant loading up to 10% was achieved. A comparative investigation of the physicochemical properties of both solids was carried out by a multidisciplinary approach, by using a combination of spectroscopic, structural, and thermal characterization tools. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) data indicated that the one-pot-prepared solid showed that the presence of CTA(+) molecules in the synthesis gel did not affect the clay structure. In addition, thermal analysis suggested that the inorganic layers play an active role in stabilizing and protecting the surfactant molecules by increasing their thermal stability. A different arrangement of intercalated CTA(+) ions in the two hybrid clays was observed by solid state NMR in combination with Fourier transform infrared (FTIR) spectroscopy and assigned to a different all-trans/gauche conformation ratio of the surfactant depending on the synthetic method used to prepare the two final materials. The surfactant organization is also influenced by the lamellae charge density, which is different in the two organo-modified materials as found by (27)Al and (29)Si MAS NMR experiments.  相似文献   

19.
The location of the hydrodynamic shear surface is discussed for micelles of Na dodecyl sulfate and for clay particles (platelets of montmorillonite and of vermiculite). Micelles are characterized by a combination of experiments: light scattering, micellar self-diffusion, intrinsic viscosity, electrophoresis and electric conductance. The concerted interpretation of these experiments shows that the shear surface of micelles coincides within 0.1 nm with the surface enveloping the heads of the micellized ions. Claims of structured water in clays and an abnormally high viscosity of clay-held water have been based on the low self-diffusion of water in swollen clays, and on the temperature dependence of the hydraulic resistance of clay plugs (anomalous activation energy). It is shown that the self-diffusion of water between the platelets requires corrections for a wall effect and for the hydration of the exchangeable, slow moving cations. After application of such corrections, the viscosity of water in clay is found to be about the same as of bulk water, with the shear surface located at 0.1 ± 0.1 nm from the clay/water interface. The small anomaly in the activation energy of water in clay plugs is reasonably explained by a slight change with temperature of the pore size distribution in the plugs. Approximate calculations of the dielectric constant of water in electric double layers suggest some restriction in the orientation of water molecules in the first layer next to highly charged interfaces such as vermiculite/water. The various results all indicate that changes in the water mobility induced by a charged interface are small and do not reach beyond the first layer of water molecules.  相似文献   

20.
以硝酸铋与磷钼酸为原料,通过水热反应制备高催化活性光催化剂,应用X射线衍射和扫描电子显微镜进行材料表征,通过以氙灯为光源研究材料对四环素的表面光催化降解的特性。本实验涉及无机纳米材料的水热合成、结构表征以及有机类污染物光催化降解应用,将无机化学、物理化学、有机化学和分析化学的理论内容、实验方法与科学研究前沿相结合,能够全方位提升本科大学生的综合实验技能及科学研究水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号