首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The objective of this work was to obtain water-in-oil (w/o) emulsions with polyglycerol polyricinoleate (PGPR) as emulsifier and to study the effect of the addition of calcium in the dispersed aqueous phase on the stability of these systems. Emulsions were formulated with 0.2, 0.5 and 1.0% w/w PGPR and 10% w/w water containing calcium chloride at varied concentrations or other salts (calcium lactate or carbonate; sodium, magnesium or potassium chloride). The stability of these systems was studied with a vertical scan analyzer during 15 days; coalescence and sedimentation were observed as simultaneous destabilization processes. The increase of PGPR concentration and/or calcium chloride content gave more stable emulsions. The stabilizing effect of calcium salt was attributed to the diminution of the water droplets size, the decrease of the attractive force between water droplets and the increase of the adsorption density of the emulsifier. The viscoelastic parameters of the interfacial film were decreased with increasing calcium and PGPR concentrations. Calcium chloride produced a higher increase of stability than calcium salts with lower dissociation degree. The presence of any assayed salt in the aqueous phase also allowed the stabilization of w/o emulsions with higher water contents.  相似文献   

2.
Carbon nanotube capsules (CNCs) with the diameter of 5-10 microm were fabricated from acid-modified multiwalled carbon nanotubes (CNTs) using water-in-oil (W/O) emulsion technique. The effects of the content of CNTs in water, the extent of acid treatment, and the length of CNTs used on the formation and morphology of CNCs were investigated. It was found that the amount of CNTs in water and the length of CNTs are the crucial factors for the formation of carbon nanotube capsules.  相似文献   

3.
Here, we present a method to synthesize expandable spherical polystyrene beads containing well-dispersed water microdroplets. The beads, 2–3 mm in diameter, were prepared through surfactant-free Pickering emulsion polymerization in water-in-oil-in-water (w/o/w) system using cross-linked starch nanoparticles (CSTN) as emulsifier. The CSTNs were in situ surface-modified by styrene maleic anhydride copolymer as confirmed by infrared spectroscopy and contact angle analysis. The entrapped water microdroplets with the average size of 3–4 μm were shown to be surrounded by a dense layer of the CSTN. The number droplet density as well as water encapsulation efficiency in the polystyrene beads increased with the CSTN concentration. Furthermore, regardless of CSTN content, all samples exhibited high encapsulation stability of over 68 % after 3 months. These characteristics along with good expansion behavior suggest the synthesized beads as expandable polystyrene containing water as a green blowing agent.  相似文献   

4.
姬相玲 《高分子科学》2016,34(4):475-482
In this work, monodisperse giant polymersomes are fabricated by dewetting of water-in-oil-in-water double emulsion droplets which are assembled by amphiphilic block copolymer molecules in a microfluidic device. The dewetting process can be tuned by solvation between solvent and amphiphilic block copolymer to get polymersomes with controllable morphology. Good solvent(chloroform and toluene) hinders dewetting process of double emulsion droplets and gets acornlike polymersomes or patched polymersomes. On the other hand, poor solvent(hexane) accelerates the dewetting process and achieves complete separation of inner water phase from oil phase to form complete bilayer polymersomes. In addition, twin polymersomes with bilayer membrane structure are formed by this facile method. The formation mechanism for different polymersomes is discussed in detail.  相似文献   

5.
Electroacoustic potentials are measured for toluene in water miniemulsions stabilized by cetyl alcohol (CA) and 10 mM sodium lauryl sulfate (SLS). The general trend with increasing CA concentration is a sharp drop in the potential up to 20 mM CA, after which the potential remains relatively constant as the CA concentration is further increased. The general trends in the electrokinetic sonic amplitude (ESA) and ζ-potential calculated ESA agree with the ζ-potential determined with microelectrophoresis for o/w miniemulsions prepared at several CA concentrations. However, the magnitude of the electroacoustic ζ-potential is two to three times lower than that of the electrophoretic ζ-potential. Dilution experiments show that the dynamic mobility varies linearly with the dispersion concentration, indicating that particle-particle interactions cancel in the electroacoustic field. The magnitude of the ζ-potential calculated from the dynamic mobility extrapolated to infinite dilution remains lower than that of the electrophoretic ζ-potential. Similar behavior is observed for a monodisperse polystyrene latex.  相似文献   

6.
7.
Using silver ion as a carrier in o/w/o type emulsion liquid membranes, batch-wise extraction experiments were performed to separate polyunsaturated fatty acid ethyl esters originating in sardine oil. It was possible to separate polyunsaturated fatty acid (PUFA) esters from the mixture of PUFA and saturated fatty acid esters. The operating conditions for stable liquid membranes were experimentally determined. A new membrane breakage model that successfully describes the membrane stability behavior is proposed.  相似文献   

8.
9.
Zwitterionic gemini surfactants, which have the advantages of both zwitterionic and gemini surfactants, have been widely used in various disciplines. Sulfobetaine-type zwitterionic gemini surfactants consisting of 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (2CnSb with 6, 8 and 10 carbon atoms) were evaluated for their interfacial activities at the water/crude oil interface. The 2C10Sb molecules showed a remarkable ability to decrease the interface tension (IFT) of water/crude oil, and the degree of decrease was much greater than those in either zwitterionic or gemini surfactant systems by at least two orders of magnitude. Furthermore, the effects of salts (NaCl, CaCl2, and MgCl2) on the IFT of the 2C10Sb system were thoroughly investigated. Interestingly, the delicate balance between the effects of additional cations and the intramolecular interactions of 2C10Sb molecules played crucial roles in the interfacial arrangements of 2C10Sb molecules, which were mainly dependent on the bonding abilities of the cations. Moreover, a zwitterionic surfactant and a cationic gemini surfactant were employed in control experiments to verify the proposed mechanisms.  相似文献   

10.
11.
An attempt is made to apply dielectric theories of interfacial polarization to observations of dielectric relaxations for W/O emulsions. Approximate formulas for disperse systems in a W/O type were derived from the two theories: one proposed by Maxwell and Wagner for dilute disperse systems of spherical particles, and the other developed by Hanai for concentrated disperse systems. Dielectric measurements were carried out on concentrated W/O emulsions prepared from kerosene and distilled water or KCl aqueous solutions by minimal use of emulsifiers. Marked dielectric relaxations were observed with the emulsions, the dielectric parameters having been determined to characterize the relaxation data. Phase parameters such as relative permittivity, electric conductivity and volume fraction of the disperse phase were evaluated from the dielectric parameters by use of the approximate formulas of the respective theories. The phase parameters evaluated and the frequency dependence of complex permittivity of the W/O emulsions deduced from the theory for concentrated disperse systems are in excellent agreement with the observed data in comparison to that for dilute disperse systems. It is concluded that the dielectric relaxations due to the interfacial polarization of disperse systems of spheres are explained satisfactorily by the theory for concentrated disperse systems.  相似文献   

12.
Small-angle X-ray scattering was used to elucidate the structure of crosslinked polyacrylate gel/dodecyltrimethylammonium bromide complexes equilibrated in solutions of varying concentrations of surfactant and sodium bromide (NaBr). Samples were swollen with no ordering (micelle free), or they were collapsed with either several distinct peaks (cubic Pm3n) or one broad correlation peak (disordered micellar). The main factor determining the structure of the collapsed complexes was found to be the NaBr concentration, with the cubic structure existing up to approximately 150 mM NaBr and above which only the disordered micellar structure was found. Increasing the salt concentration decreases the polyion mediated attractive forces holding the micelles together causing swelling of the gel. At sufficiently high salt concentration the micelle-micelle distance in the gel becomes too large for the cubic structure to be retained, and it melts into a disordered micellar structure. As most samples were above the critical micelle concentration, the bulk of the surfactant was in the form of micelles in the solution and the surfactant concentration thereby had only a minor influence on the structure. However, in the region around 150 mM NaBr, increasing the surfactant concentration, at constant NaBr concentration, was found to change the structure from disordered micellar to ordered cubic and back to disordered again.  相似文献   

13.
Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced.  相似文献   

14.
15.
The influence of water pH and cationic surfactant content on the interfacial properties and stability of an Algerian bitumen aqueous emulsion were investigated. While the stability was quantified by both the test-bottle method and size distribution measurements, the interfacial properties of the water-bitumen interface were assessed using interfacial tension measurements. Optical microscopy was also used to visualise the dispersed water droplets in the oil phase. The results showed that addition of the cationic surfactant at a concentration of 25 mmol L?1 in acidic water (pH 2) improves the bitumen emulsion stability and effectively decreases the interfacial tension.  相似文献   

16.
Degradation of kinetically-stable o/w emulsions   总被引:3,自引:0,他引:3  
This article summarizes the studies on the degradation of the thermodynamically unstable o/w (nano)emulsion--a dispersion of one liquid in another, where each liquid is immiscible, or poorly miscible in the other. Emulsions are unstable exhibiting flocculation, coalescence, creaming and degradation. The physical degradation of emulsions is due to the spontaneous trend toward a minimal interfacial area between the dispersed phase and the dispersion medium. Minimizing the interfacial area is mainly achieved by two mechanisms: first coagulation possibly followed by coalescence and second by Ostwald ripening. Coalescence is often considered as the most important destabilization mechanism leading to coursing of dispersions and can be prevented by a careful choice of stabilizers. The molecular diffusion of solubilizate (Ostwald ripening), however, will continuously occur as soon as curved interfaces are present. Mass transfers in emulsion may be driven not only by differences in droplet curvatures, but also by differences in their compositions. This is observed when two or more chemically different oils are emulsified separately and the resulting emulsions are mixed. Compositional ripening involves the exchange of oil molecules between emulsion droplets with different compositions. The stability of the electrostatically- and sterically-stabilized dispersions can be controlled by the charge of the electrical double layer and the thickness of the droplet surface layer formed by non-ionic emulsifier. In spite of the similarities between electrostatically- and sterically-stabilized emulsions, there are large differences in the partitioning of molecules of ionic and non-ionic emulsifiers between the oil and water phases and the thickness of the interfacial layers at the droplet surface. The thin interfacial layer (the electrical double layer) at the surface of electrostatically stabilized droplets does not create any steric barrier for mass transfer. This may not be true for the thick interfacial layer formed by non-ionic emulsifier. The interactive sterically-stabilized oil droplets, however, can favor the transfer of materials within the intermediate agglomerates. The stability of electrosterically-stabilized emulsion is controlled by the ratio of the thickness of the non-ionic emulsifier adsorption layer (delta) to the thickness of the electrical double layer (kappa(-1)) around the oil droplets (delta/(kappa(-1))) = (deltakappa). The monomer droplet degradation can be somewhat depressed by transformation of coarse emulsions to nano-emulsion (miniemulsion) by intensive homogenization and by the addition of a surface active agent (coemulsifier) or/and a water-insoluble compound (hydrophobe). The addition of hydrophobe (hexadecane) to the dispersed phase significantly retards the rate of ripening. A long chain alcohol (coemulsifier) resulted in a marked improvement in stability, as well, which was attributed to a specific interaction between alcohol and emulsifier and to the alcohols tendency to concentrate at the o/w interface to form stronger interfacial film. The rate of ripening, according to the Lifshitz-Slyozov-Wagner (LSW) model, is directly proportional to the solubility of the dispersed phase in the dispersion medium. The increased polarity of the dispersed phase (oil) decreases the stability of the emulsion. The molar volume of solubilizate is a further parameter, which influences the stability of emulsion or the transfer of materials through the aqueous phase. The interparticle interaction is expected to favor the transfer of solubilizate located at the interfacial layer. The kinetics of solubilization of non-polar oils by ionic micelles is strongly related to the aqueous solubility of the oil phase (the diffusion approach), whilst their solubilization into non-ionic micelles can be contributed by interparticle collisions.  相似文献   

17.
The effect of dynamic surfactant adsorption on the stability of concentrated oil in water emulsions is studied. For this purpose, a modification of the standard Brownian dynamics algorithm (Ermak, D.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352) previously used to study the behavior of bitumen emulsions assuming instantaneous adsorption (Urbina-Villalba, G.; García-Sucre, M. Langmuir 2000, 16, 7975) was employed. In the present case, dynamic adsorption (DA) was accounted for through a time-dependent electrostatic repulsion between the drops, a function of the surfactant surface excess. The surface excess was allowed to evolve with time according to well-established analytical expressions which depend parametrically on the surfactant diffusion constant (Ds) and the total surfactant concentration (C). The investigation required appropriate incorporation of hydrodynamic interactions in concentrated systems. This was achieved through a novel methodology, which expresses the diffusion constant of each particle as a function of its local concentration and the shortest distance of separation between nearest neighbors. In model systems, the variation of the number of drops as a function of time was followed for different magnitudes of the apparent diffusion constant D(app) of the surfactant. For each of these values, the effect of C and the volume fraction of internal phase (phi) was considered. DA was found to influence emulsion stability appreciably at moderately high phi. In this case, the average collision time between drops is comparable to the time required for the occurrence of a substantial surfactant adsorption, but the interdrop separation is sufficiently large to prevent a considerable slowdown of particle movement due to hydrodynamic interactions.  相似文献   

18.
The batch extraction of penicillin G from a model media was studied so as to obtain the optimal w/o ratio in an emulsion liquid membrane (ELM) system with the help of our previous works. First of all, the effects of organic solvents or surfactants in membrane phase on apparent degree of its extraction at various w/o ratios were investigated. The organic solvents and surfactants were kerosene/n-butyl acetate and Span 80/PARABAR 9551, respectively. The optimal composition between two surfactants for the highest apparent degree of extraction was obtained at each w/o ratio.With the optimal surfactant composition at each w/o ratio, citrate buffer solutions of three different concentrations having about pH 4.8 were selected as the external aqueous phase. The mass of Na2CO3 in the internal phase was kept constant for every w/o ratio in order to investigate the effects of w/o ratio on the degree of extraction under the same trapping mass of Na2CO3 for penicillin G. The highest possible concentration of Na2CO3 in the internal phase was chosen using balance equations and equilibrium expressions. In consequence, the highest actual degree of extraction of 98.2% and the lowest percentage of swelling of 36.0 were obtained in the specific ELM system with 0.41 M citrate buffer solution, 0.175 M Na2CO3 and w/o ratio of 1/1.  相似文献   

19.
Surfaces and interfaces are receptive valuable significant property of chemical molecules due to their potential to develop several phenomena in a self‐controlled mechanism. Science of surfaces is vast and is being used industrially since time immemorial. Their accurate and simultaneous estimation is necessary; therefore, the survismeter was used for measuring them along with viscosity. Individually tensiometers, X‐ray reflective microscope, and viscometers are used for surface tension, interfacial tension, and viscosity, respectively. These devices are sophisticated, expensive, and individually consume much time and resources with poor reproducibility in measurements. Survismeter is an alternative device for similar measurements together with higher accuracies and reproducibility. It works on a principle of capillary flow and pressure gradient (PG) inside liquid‐holding and air‐filled bulbs. Several liquids have been used for study with ± 0.01 mN/m, ± 0.01 mN/m and ± 1 × 10?5 N s/m2 accuracies in respective data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Here, we derive analytical asymptotic expressions for the dynamic surface tension of ionic surfactant solutions in the general case of nonstationary interfacial expansion. Because the diffusion layer is much wider than the electric double layer, the equations contain a small parameter. The resulting perturbation problem is singular and it is solved by means of the method of matched asymptotic expansions. The derived general expression for the dynamic surface tension is simplified for the special case of immobile interface and for the maximum bubble pressure method (MBPM). The case of stationary interfacial expansion is also considered. The effective diffusivity of the ionic surfactant essentially depends on the concentrations of surfactant and nonamphiphilic salt. To test the theory, the derived equations are applied to calculate the surfactant adsorption from MBPM experimental data. The results excellently agree with the adsorption determined independently from equilibrium surface-tension isotherms. The derived theoretical expressions could find application for interpreting data obtained by MBPM and other experimental methods for investigating interfacial dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号