共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a novel method for the formation of a complete depolarizer that is based on a polarization-state scrambling procedure over the space domain. Such an element can be achieved by use of cascaded, computer-generated, space-variant subwavelength dielectric gratings. We introduce a theoretical analysis and experimentally demonstrate a depolarizer for infrared radiation at a wavelength of 10.6 microm. 相似文献
2.
Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings 总被引:6,自引:0,他引:6
We present a novel method for forming radially and azimuthally polarized beams by using computer-generated subwavelength dielectric gratings. The elements were deposited upon GaAs substrates and produced beams with a polarization purity of 99.2% at a wavelength of 10.6 microm . We have verified the polarization properties with full space-variant polarization analysis and measurement, and we show that such beams have certain vortexlike properties and that they carry angular momentum. 相似文献
3.
We report the appearance of a geometrical phase in space-variant polarization-state manipulations. This phase is related to the classic Pancharatnam-Berry phase. We show a method with which to calculate it and experimentally demonstrate its effect, using subwavelength metal stripe space-variant gratings. The experiment is based on a unique grating for converting circularly polarized light at a wavelength of 10.6 mum into an azimuthally polarized beam. Our experimental evidence relies on analysis of far-field images of the resultant polarization. 相似文献
4.
An optical encryption method based on a geometrical phase produced by space-variant polarization manipulation is presented. The decrypted picture is retrieved either by a polarization measurement of the beam emerging from the encrypted element or by a single intensity measurement of the beam transmitted through the encrypted element followed by an optical key element. Both elements are realized by use of computer-generated space-variant subwavelength dielectric gratings. Theoretical analyses of the optical concept are presented along with experimental results. 相似文献
5.
将矢量衍射数值算法—严格耦合波分析用于精确计算亚波长闪耀光栅的衍射效率,并分析其衍射特性。建立了闪耀光栅的电磁介质模型,并将楔形不规则结构简化为多层矩形光栅结构,通过电磁场的介质分布建立严格耦合波方程。根据边界条件求解出各层的电磁场分布,再通过增透矩阵方法将各层电磁场依次迭代,求解出了整个结构的衍射效率。计算分析显示,对闪耀角为11.3°、周期为500 nm的金属铝闪耀光栅可以得到高于90%的衍射效率和相应的闪耀级次。实验表明这种矢量衍射数值算法具有较高的准确性,可以推广应用于高致密刻线复杂光栅的衍射计算分析。 相似文献
6.
We provide an experimental demonstration of novel form-birefringent computer-generated holograms at wavelengths of 1.55 and 10.6 microm. These novel devices utilize a 2-D array of cells that can be fabricated with a single lithographic step. Each cell contains a subwavelength binary grating whose orientation controls the desired continuous phase profile within the cell. 相似文献
7.
We present a novel method for forming linearly polarized axially symmetric beams with various polarization orders that is based on computer-generated space-variant subwavelength gratings. We introduce and experimentally demonstrate that our space-variant polarization state manipulations are accompanied by a phase modification of a helical structure that results from the Pancharatnam-Berry phase. We have verified the polarization properties of our gratings for laser radiation at 10.6-microm wavelength. 相似文献
8.
A novel method for rapid polarization measurement is suggested. The method is based on a periodic space-variant polarizer that can be realized by use of subwavelength metal-stripe gratings. The Stokes parameters of the incident beam are determined by Fourier analysis of the space-variant intensity transmitted through the grating, thus permitting real-time polarization measurement. We discuss the design and realization of such polarizers and demonstrate our technique with polarization measurements of CO(2)-laser radiation at a wavelength of 10.6mum. 相似文献
9.
Computer-generated space-variant polarization elements with subwavelength metal stripes 总被引:1,自引:0,他引:1
A novel method of performing two-dimensional space-variant polarization operations is presented. The method is based on determining the local direction and period of subwavelength metal-stripe gratings by use of vectorial optics to obtain any desired continuous polarization change. We demonstrate our approach with specific computer-generated space-variant polarization elements for laser radiation at 10.6mum. The polarization properties are verified with complete space-variant polarization analysis and measurement. 相似文献
10.
Nak-Hyeon Kim Kyung Min Byun Seung Ho Choi Young L. Kim 《Applied physics. B, Lasers and optics》2014,114(3):347-353
We experimentally and theoretically investigate that detection sensitivity in surface plasmon resonance (SPR) biosensors can be significantly enhanced by employing subwavelength dielectric gratings deposited on a gold film. The enhancement originates from an improvement of field-matter interaction: enhanced evanescent field intensity at the binding region and increased surface reaction area. Using a large-area SiO2 grating array fabricated by nanoimprint lithography, experimental sensor performance measured by parylene film coating shows that the SPR substrates combined with a dielectric grating provide a notable sensitivity improvement compared to a conventional bare gold film. We also demonstrate that plasmon field can be more confined and enhanced at the dielectric gratings with a larger width. The proposed SPR structure could potentially be useful in a variety of plasmonic applications including high-sensitivity biosensors. 相似文献
11.
We have developed a simple and scalable bottom-up approach for fabricating moth-eye antireflective coatings on GaAs substrates. Monolayer, non-close-packed silica colloidal crystals are created on crystalline GaAs wafers by a spin-coating-based single-layer reduction technique. These colloidal monolayers can be used as etching masks during a BCl(3) dry-etch process to generate subwavelength-structured antireflective gratings directly on GaAs substrates. The gratings exhibit excellent broadband antireflective properties, and the specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis model. These bioinspired antireflection coatings have important technological applications ranging from efficient solar cells to IR detectors. 相似文献
12.
We present a replication process, named reversal soft ultraviolet (UV) nanoimprint, to fabricate a high- aspect-ratio flexible subwavelength grating (SWG) on a polyurethane acrylate (PUA). This nanopatterning technique consists of casting, reversal UV imprint, and dry release. The UV curing process of PUA to avoid pattern collapse is investigated. Revalpha film acts as the supporting and sacrificial layer during the whole process due to its special surface energy property. The free-standing PUA structures with a period of 200 nm and a depth of 350 nm can be automatically released from the Revalpha film by heating. The PUA resist is well suited to replicate fine patterns of the mold with high aspect ratio and large area precisely and uniformly for low surface energy and low viscosity. The measured transmittance is compared with the calculation results based on rigorous coupled-wave analysis in the wavelength region ranging from 500 to 800 nm. The experimental results agree well with the theoretical calculations. 相似文献
13.
We fabricate the aluminum-doped zinc oxide (AZO) subwavelength gratings (SWG) on Si and glass substrates by holographic lithography and sequent CH4/H2/Ar reactive ion etching process. The etch selectivity of AZO over photoresist mask as well as the nano-scale shape is optimized for better antireflection performance. To analyze the antireflective properties of AZO SWG surface, the optical reflectivity is measured and then calculated together with a rigorous coupled-wave analysis. The reflectance spectrum can be considerably changed by incorporating the SWG into AZO film. As the SWG height of AZO on Si substrate increases, the magnitude of interference oscillations in the reflectance spectrum tends to be reduced with the larger difference between its maxima. The use of optimized SWG can significantly reduce the surface reflection of AZO film at the desired wavelengths. The measured reflectance data of AZO SWG are reasonably consistent with the simulation results. No considerable change in transmission characteristics is observed for AZO SWG structures. 相似文献
14.
L. M. Blinov V. V. Lazarev S. G. Yudin V. V. Artemov S. P. Palto M. V. Gorkunov 《Journal of Experimental and Theoretical Physics》2016,123(5):778-783
Spectral positions of plasmon resonances related to boundaries between a thin aluminum layer and dielectrics (air, glass, VDF–TrFE 65/35 ferroelectric copolymer, and indium tin oxide (ITO)) have been determined in the transmission spectra of aluminum gratings of three types with 30 × 30 μm2 dimensions and 350-, 400-, and 450-nm line periods. Experimental results agree well with spectral positions of plasmon resonances calculated for the normal incidence of TM-polarized light. In addition, maximum values of transmission coefficients in the region of λ ≈ 900–950 nm have been determined for glass–Al–copolymer and glass–ITO–Al–copolymer structures. These values are close to 100%, which shows that the effective optical aperture is two times greater than the geometric areas of slits. 相似文献
15.
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the ``moth-eye' antireflection surface on silicon, and the numerical result agrees well with the experimental one. 相似文献
16.
Real-time analysis of partially polarized light with a space-variant subwavelength dielectric grating 总被引:1,自引:0,他引:1
A novel method for real-time polarization measurement is presented. The method is based on a space-variant wave plate that we realized as a computer-generated space-variant subwavelength dielectric grating. The Stokes parameters of the incident beam are determined by Fourier analysis of the space-variant intensity transmitted through the grating and an analyzer. We discuss the design and realization of such wave plates and demonstrate our technique with polarization measurements of both polarized and partially polarized CO(2)-laser radiation at a wavelength of 10.6 mum. 相似文献
17.
We studied the optical bistability of subwavelength metallic film coated by Kerr dielectric gratings numerically. It is found that the effect of optical bistability in the structure is explained by the excitations of the coupled surface plasmon polaritons at the coated metallic films. The effect of thickness of the metallic films on bistability loop is analyzed in detail, and the authors attribute the change of the bistability loop to the lifetime of the coupled surface plasmon polaritons. 相似文献
18.
19.
Estruch T Jaeck J Pardo F Derelle S Primot J Pelouard JL Haidar R 《Optics letters》2011,36(16):3160-3162
We investigate the strong electromagnetic coupling that settles in dual metallic grating structures. This coupling is evidenced to lead to a perfect optical extinction in the transmission spectrum. The behavior of this perfect extinction that strongly depends on the longitudinal space and the lateral displacement between the two gratings can be explained by a simple model that describes the interference between a propagating mode and a couple of evanescent modes. The results show that the electromagnetic transmission of the structure can be tuned by controlling the position of this perfect transmission extinction and thus pave the way to new types of infrared tunable filters. 相似文献
20.
A method for polarimetric measurement that uses a discrete space-variant subwavelength dielectric grating is presented. One retrieves the polarization state by measuring the far-field intensity of a beam emerging from the grating followed by a polarizer. The analysis for a partially polarized, quasi-monochromatic beam is performed by use of the beam coherence polarization matrix along with an extended van Cittert-Zernike theorem. We experimentally demonstrate polarization measurements of both fully and partially polarized light. 相似文献