首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel hierarchical heterostructures formed by wrapping ZnS nanowires with highly dense SiO(2) nanowires were successfully synthesized by a vapor-liquid-solid process. The as-synthesized products were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy equipped with an energy-dispersive X-ray spectrometer. Studies indicate that a typical hierarchical ZnS/SiO(2) heterostructure consists of a single-crystalline ZnS nanowire (core) with diameter gradually decreasing from several hundred nanometers to 20 nm and adjacent amorphous SiO(2) nanowires (branches) with diameters of about 20 nm. A possible growth mechanism was also proposed for the growth of the hierarchical heterostructures.  相似文献   

2.
Single-crystalline ZnS nanowires coated with graphitic carbon shells were synthesized by thermal evaporation of a mixture of ZnS and SnS powders in a graphite crucible. As-synthesized ZnS/C nanostructures were characterized using X-ray diffraction, scanning electron microscope, and transmission electron microscopy equipped with an energy-dispersive X-ray spectrometer. The ZnS core nanowires were formed by a Sn-catalytic vapor-liquid-solid process and grew along the [210] directions. Photoluminescence spectrum reveals that the carbon-coated ZnS nanowires have a strong emission band centered at 586 nm and a shoulder band at 645 nm.  相似文献   

3.
Rapid synthesis of wurtzite ZnS nanowires and nanoribbons has been achieved by a simple thermal evaporation of ZnS powder onto Si substrate in the presence of Au catalyst. A vapor-liquid-solid process is proposed for the formation of the ZnS nanostructures. The flow rate of the inert carrier Ar gas along with the temperature play an important role in defining the morphology of the ZnS nanostructures. The morphological change of the ZnS nanostructures and their growth sequence were studied through scanning electron microscopy. Room-temperature photoluminescence measurements showed intense blue emission at approximately 398 nm from both the nanowires and the nanoribbons.  相似文献   

4.
One-step fabrication of uniform Si-core/CdSe-sheath nanocables   总被引:1,自引:0,他引:1  
A simple one-step thermal evaporation of CdSe powder using Si substrate at controlled conditions results in ultrauniform Si-core/CdSe-sheath nanocables. These nanocables are approximately 80 nm in diameter and several tens of micrometers in length. Detailed microstructure and chemical composition analysis of the nanocables indicates that they are composed of a single crystalline Si (cubic) core and CdSe (hexagonal) sheath. The experimental evidence suggested that the Si nanowires can be directly grown from the Si substrate via an oxide-assisted growth mechanism and further served as templates for CdSe, resulting in nanocable heterostructures.  相似文献   

5.
Large-yield and crystalline GaN nanowires have been synthesized on a Si substrate via a simple thermal evaporation process. The majority of the GaN nanowires has bicrystalline structures with a needlelike shape, a triangular prism morphology, and a uniform diameter of approximately 100 nm. Field-emission measurements show that the bicrystalline GaN nanowires with sharp tips have a lower turn-on field of approximately 7.5 V/microm and are good candidates for low-cost and large-area electron emitters. It is believed that the excellent filed emission property is attributed to the bicrystalline structure defects and sharp tips.  相似文献   

6.
SiO(2) nanotubes with tunable diameters and lengths have been successfully synthesized via a simple in situ templatelike process by thermal evaporation of SiO, ZnS, and GaN in a vertical induction furnace. The structure and morphologies were systematically investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. Studies found that both the diameters and lengths of the SiO(2) nanotubes can be effectively tuned by simply changing the reaction temperatures. The range of changes was from 30 nm (diameter) and several hundred micrometers (length) at 1450 degrees C to 100 nm (diameter) and 2-10 micrometers (length) at 1300 degrees C. Varying some other experimental parameters results in the formation of additional SiO(2)-based nanostructures, such as core-shell ZnS-SiO(2) nanocables, ZnS nanoparticle filled SiO(2) nanotubes, and fluffy SiO(2) spheres. Based on the observations, an in situ templatelike process was proposed to explain the possible growth mechanism.  相似文献   

7.
Scales of aligned single-crystalline SiC nanowires (SiCNWs) arrays with very small diameter were synthesized by a simple thermal evaporation of ZnS and carbon on silicon wafer. The as-received SiCNWs possess a uniform size distribution centered at approximately 8.0 nm, even with a minimum of approximately 3.0 nm. The highly oriented SiCNWs usually grew along [111] direction with a clean surface, very thin oxide shell, and small quantity of stacking faults. A crystalline tube-like SiC nanostructure is also obtained. The optical properties, including photoluminescence and Raman scattering spectra of the SiCNWs, were investigated, respectively. In the end, a growth model on basis of the experimental data is suggested.  相似文献   

8.
A white substance was got by directly heating TiSi powder on Ti foil, under Ar+O2 atmosphere. ED, EDX, SEM and HRTEM studies reveal that the white substance consists of amorphous SiO2nanowires of smooth surface and uniform diameter (40-90 nm). X-ray-induced luminescent emission experiment shows that two broad peaks are at 430 and 570 nm. A one-dimensional growth mechanism, on the basis of the one-dimensional thermal flow during nanowire formation, is discussed.  相似文献   

9.
Two unique helical zinc gallate (ZnGa2O4) nanostructures were synthesized by thermal evaporation using the zinc selenide (ZnSe) nanowires; helical ZnGa2O4 nanowire rolls either on a straight ZnSe nanowire support or without any support. They all consist of single-crystalline cubic ZnGa2O4 crystals without any dislocation over the entire helical structure and have four equivalent growth directions of 011 with the axial direction of [001]. We suggest that the lattice matching with the ZnSe nanowires would be an important factor in determining the growth direction of the helical ZnGa2O4 nanowires.  相似文献   

10.
Catalytic growth and characterization of gallium nitride nanowires.   总被引:12,自引:0,他引:12  
The preparation of high-purity and -quality gallium nitride nanowires is accomplished by a catalytic growth using gallium and ammonium. A series of catalysts and different reaction parameters were applied to systematically optimize and control the vapor-liquid-solid (VLS) growth of the nanowires. The resulting nanowires show predominantly wurtzite phase; they were up to several micrometers in length, typically with diameters of 10-50 nm. A minimum nanowire diameter of 6 nm has been achieved. Temperature dependence of photoluminescence spectra of the nanowires revealed that the emission mainly comes from wurtzite GaN with little contribution from the cubic phase. Moreover, the thermal quenching of photoluminescence was much reduced in the GaN nanowires. The Raman spectra showed five first-order phonon modes. The frequencies of these peaks were close to those of the bulk GaN, but the modes were significantly broadened, which is indicative of the phonon confinement effects associated with the nanoscale dimensions of the system. Additional Raman modes, not observed in the bulk GaN, were found in the nanowires. The field emission study showing notable emission current with low turn-on field suggests potential of the GaN nanowires in field emission applications. This work opens a wide route toward detailed studies of the fundamental properties and potential applications of semiconductor nanowires.  相似文献   

11.
大长径比ZnS纳米线的制备、结构和生长机理   总被引:2,自引:0,他引:2  
通过碳热辅助化学气相沉积法, 以Au作为催化剂, 在较低温度(800 益)制备了ZnS纳米线, 其尺寸均匀, 表面光滑, 直径约为40 nm, 具有很大的长径比, 是典型的单晶纤锌矿六方结构. 高分辨透射电镜和选区电子衍射分析表明, 纳米线的生长方向为[1100], 与已报道的生长方向不同. 纳米线的生长是由气-液-固(vapor-liquid-solid)机理控制的.  相似文献   

12.
We report the synthesis, structural characterization, and electrical transport properties of free-standing single-crystal CoSi nanowires synthesized via a single-source precursor route. Nanowires with diameters of 10-150 nm and lengths of greater than 10 mum were synthesized through the chemical vapor deposition of Co(SiCl(3))(CO)(4) onto silicon substrates that were covered with 1-2 nm thick SiO(2). Transmission electron microscopy confirms the single-crystal structure of the cubic CoSi. X-ray absorption and emission spectroscopy confirm the chemical identity and show the expected metallic nature of CoSi, which is further verified by room-temperature and low-temperature electrical transport measurements of nanowire devices. The average resistivity of CoSi nanowires is found to be about 510 muOmega cm. Our general and rational nanowire synthesis approach will lead to a broad class of silicide nanowires, including those metallic materials that serve as high-quality building blocks for nanoelectronics and magnetic semiconducting Fe(1-x)Co(x)Si suitable for silicon-based spintronics.  相似文献   

13.
谢云龙  钟国  杜高辉 《化学学报》2012,70(10):1221-1226
介绍一种利用石墨还原快速制备大量硫化锌纳米线的方法,并分别合成了超晶格型、双轴型、核/壳型的硫化锌/氧化锌异质结纳米线。所合成的硫化锌纳米线存在六方纤锌矿和立方闪锌矿两种晶型,纳米线长度达几十微米,直径在20-50 nm,直径均匀且产量很高。在具有双轴型的硫化锌/氧化锌异质结中,首次发现具有超结构特征的氧化锌。HRTEM分析表明,硫化锌/氧化锌超晶格异质结界面为ZB-ZnS(111)∥ZnO(0001),而核/壳型异质结界面为W-ZnS(0001)∥ZnO(0001),这三个晶面分别为各自晶体的极性面,即所合成的硫化锌/氧化锌异质结中极性面相互平行。对ZnS 和ZnS/ZnO 异质结的生长机制进行了探讨,并对硫化锌纳米线与硫化锌/氧化锌异质结的光学性质进行了分析。  相似文献   

14.
Si nanowires of diameters 5-20 nm and nanoparticles of approximately 4 nm were synthesized by a simple arc-discharge method in water. The TEM analysis reveals that the growth direction of the observed Si nanowires is parallel to the {111} crystal planes.  相似文献   

15.
Facile synthesis of photoluminescent ZnS and ZnSe nanopowders   总被引:1,自引:0,他引:1  
The solid state thermal, one pot, efficient chemical reaction between Zn and S or Se elements in a closed reactor at 650 degrees C/60 min under their autogenic pressure in an inert atmosphere yielded luminescent ZnS and ZnSe semiconducting nanopowders (NPs). Scanning and Transmission electron microscopy measurements confirmed the size and shape of the as formed ZnS and ZnSe NPs. The wide size distributions of ZnS and ZnSe NPs are confirmed by UV-vis and TEM measurements. The crystalline wurtzite phase of ZnS and face centered cubic phase of ZnSe NPs is revealed from XRD and HR-TEM measurements. The obtained Raman scattering bands also supports the formation of pure ZnS and ZnSe phases. At room temperature, a strong visible green emission centered at approximately 525 nm is measured for ZnS, while ZnSe NPs showed a broad red emission band extending from 550 to 760 nm. The putative reaction mechanism is based on the low melting and boiling points of reactants (Zn, S and Se) under their autogenic pressure in an inert atmosphere.  相似文献   

16.
A facile synthesis of ultrathin single crystal ZnS nanowires with an average diameter of 4.4 nm in high yield (close to 100%) was firstly reported through the pyrolysis of a single-source precursor (zinc diethyldithiocarbamate). The obtained ultrathin ZnS nanowires exhibit good optical properties and hold promise for future applications in nanodevices.  相似文献   

17.
Spatial bandgap engineering along single alloy nanowires   总被引:1,自引:0,他引:1  
Bandgap engineering of semiconductor nanowires is important in designing nanoscale multifunctional optoelectronic devices. Here, we report a facile thermal evaporation method, and realize the spatial bandgap engineering in single CdS(1-x)Se(x) alloy nanowires. Along the length of these achieved nanowires, the composition can be continuously tuned from x = 0 (CdS) at one end to x = 1 (CdSe) at the other end, resulting in the corresponding bandgap (light emission wavelength) being modulated gradually from 2.44 eV (507 nm, green light) to 1.74 eV (710 nm, red light). In spite of the existing composition (crystal lattice) transition along the length, these multicolor nanowires still possess high-quality crystallization. These bandgap engineered nanowires will have promising applications in such as multicolor display and lighting, high-efficiency solar cells, ultrabroadly spectral detectors, and biotechnology.  相似文献   

18.
Nanocantilever arrays were formed on the edges of the +/- (0001) planes of pre-synthesized ZnS nanoribbons via catalyst-assisted post-annealing treatment on Si substrate at 600 degrees C. Similar nanostructures could also be generated when ZnS nanoribbons were annealed by mixing with Si or SiO powder. The formation of nanocantilever arrays is associated with orientation-dependent chemical etching of the +/- (0001) polar surfaces of ZnS nanoribbons. The ability of increasing structural complexity beyond the one-step "thermal evaporation and condensation" synthesis provides a new dimension to the rational design of building blocks for nanodevices.  相似文献   

19.
A simple galvanic reduction for direct growth of Au nanowires on silicon wafers is developed. The nanowires were prepared by reacting HAuCl4aq with Sns in the presence of CTACaq (cetyltrimethylammonium chloride) and NaNO3aq, which were important to the product morphology development. The nanowire diameter was 50-100 nm, and the length was more than 20 microm.  相似文献   

20.
《Chemical physics letters》2003,367(3-4):339-343
A simple method based on the thermal oxidation of Si wafers has been discovered to provide a large-scale synthesis of very long, aligned silica nanowires. The as-grown product was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence. The obtained SiO2 nanowires had no metal contaminations, ultralong lengths of millimeters, and most diameters of ∼50 nm. The PL spectra of the SiO2 nanowires showed a strong and stable green emission at 540 nm. The nucleation and growth of the SiO2 nanowires were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号