共查询到17条相似文献,搜索用时 0 毫秒
1.
Physical modeling of direct current and radio frequency characteristics for In P-based InAlAs/InGaAs HEMTs 下载免费PDF全文
Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley–Read–Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover,the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency( f_(max)) of 385 GHz. 相似文献
2.
Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs 下载免费PDF全文
Shurui Cao 《中国物理 B》2022,31(5):58502-058502
A set of 100-nm gate-length InP-based high electron mobility transistors (HEMTs) were designed and fabricated with different gate offsets in gate recess. A novel technology was proposed for independent definition of gate recess and T-shaped gate by electron beam lithography. DC and RF measurement was conducted. With the gate offset varying from drain side to source side, the maximum drain current (Ids,max) and transconductance (gm,max) increased. In the meantime, fT decreased while fmax increased, and the highest fmax of 1096 GHz was obtained. It can be explained by the increase of gate-source capacitance and the decrease of gate-drain capacitance and source resistance. Output conductance was also suppressed by gate offset toward source side. This provides simple and flexible device parameter selection for HEMTs of different usages. 相似文献
3.
Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition 下载免费PDF全文
The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility tran-sistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device. 相似文献
4.
研究了Si 重δ 掺杂In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As单量子阱内高迁移率二维电子气系统中的反弱局域效应. 研究表明,强的Rashba自旋轨道相互作用来源于量子阱高的结构反演不对称. 高迁移率系统中,粒子的运动基于弹道输运而非扩散输运. 因此,旧的理论模型不能用于拟合实验结果. 由于最新的模型在实际拟合中过于复杂,一种简单可行的近似用于处理实验结果,并获得了自旋分裂能Δ0和自旋轨道耦合常数α两个重要的物理参数. 该结果与对纵向电阻的Shubnikov-de Haas—SdH振荡分析获得的结果一致. 高迁移率系统中的反弱局域效应研究表明,发展有效的反弱局域理论模型,对于利用Rashba自旋轨道相互作用来设计自旋器件尤为重要. 相似文献
5.
GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality
of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge
emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of
272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility
is 346 cm2/V-s and carrier concentration is 4.5 × 1016/cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515
for TE and TM modes respectively. 相似文献
6.
We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(LSD)unchanged,and obtained a group of devices with gate-recess length(Lrecess)from 0.4μm to 0.8μm through process improvement.In order to suppress the influence of the kink effect,we have done SiNX passivation treatment.The maximum saturation current density(IDmax)and maximum transconductance(gm,max)increase as Lrecess decreases to 0.4μm.At this time,the device shows IDmax=749.6 mA/mm at VGS=0.2 V,VDS=1.5 V,and gm,max=1111 mS/mm at VGS=?0.35 V,VDS=1.5 V.Meanwhile,as Lrecess increases,it causes parasitic capacitance Cgd and gd to decrease,making fmax drastically increases.When Lrecess=0.8μm,the device shows fT=188 GHz and fmax=1112 GHz. 相似文献
7.
本文采用能量为1 MeV的中子对SiN钝化的AlGaN/GaN HEMT(高电子迁移率晶体管)器件进行了最高注量为1015cm-2的辐照.实验发现:当注量小于1014cm-2时,器件特性退化很小,其中栅电流有轻微变化(正向栅电流IF增加,反向栅电流IR减小),随着中子注量上升,IR迅速降低.而当注量达到1015cm-2时,在膝点电压附近,器件跨导有所下降.此外,中子辐照后,器件欧姆接触的方块电阻退化很小,而肖特基特性退化却相对明显.通过分析发现辐照在SiN钝化层中引入的感生缺陷引起了膝点电压附近漏电流和反向栅泄漏电流的减小.以上结果也表明,SiN钝化可以有效地抑制中子辐照感生表面态电荷,从而屏蔽了绝大部分的中子辐照影响.这也证明SiN钝化的AlGaN/GaN HEMT器件很适合在太空等需要抗位移损伤的环境中应用. 相似文献
8.
Y. Cordier S. Chenot M. Laügt O. Tottereau S. Joblot F. Semond J. Massies L. Di Cioccio H. Moriceau 《Superlattices and Microstructures》2006,40(4-6):359
We report on the growth by molecular beam epitaxy of AlGaN/GaN high electron mobility transistors (HEMTs) on Si(111)/ SiO2/polySiC substrates. The structural, optical, and electrical properties of these films are studied and compared with those of heterostructures grown on thick Si(111) substrates. Field effect transistors have been realized, and they demonstrate the potentialities of III–V nitrides grown on these advanced substrates. 相似文献
9.
Low-leakage-current AIGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition 下载免费PDF全文
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated. 相似文献
10.
Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition 下载免费PDF全文
High-performance low-leakage-current AlGaN/GaN high electron mobility transistors(HEMTs) on silicon(111) substrates grown by metal organic chemical vapor deposition(MOCVD) with a novel partially Magnesium(Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally one. A 1-μm gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown AlGaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μm gate length T-shaped gate HEMTs were also investigated. 相似文献
11.
Structural and optical investigation of nonpolar α-plane GaN grown by metalben organic chemical vapour deposition on r-plane sapphire by neutron irradiation 下载免费PDF全文
Nonpolar (1120) α-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1 × 1015 cm-2. The surface morphology, the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD) and photoluminescence (PL). The AFM result shows deteriorated sample surface after the irradiation. Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction. Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample, indicating that more point defects appear in the irradiated sample. The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results. The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron. 相似文献
12.
Characterization of Al2O3 /GaN/AlGaN/GaN metalinsulator-semiconductor high electron mobility transistors with different gate recess depths 下载免费PDF全文
In this paper,in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs),we demonstrate better performances of recessed-gate Al 2 O 3 MIS-HEMTs which are fabricated by Fluorine-based Si 3 N 4 etching and chlorinebased AlGaN etching with three etching times (15 s,17 s and 19 s).The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT.Through the recessed-gate etching,the transconductance increases effectively.When the recessed-gate depth is 1.02 nm,the best interface performance with τ it =(0.20-1.59) μs and D it =(0.55-1.08)×10 12 cm 2 ·eV 1 can be obtained.After chlorine-based etching,the interface trap density reduces considerably without generating any new type of trap.The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices.By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times,it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively. 相似文献
13.
L.L. Yang Q.X. ZhaoG.Z. Xing D.D. WangT. Wu M. WillanderI. Ivanov J.H. Yang 《Applied Surface Science》2011,257(20):8629-8633
Zn0.94Mg0.06O/ZnO heterostructures have been grown on 2 in. sapphire wafer using metal organic chemical vapor deposition (MOCVD). Photoluminescence (PL) mapping demonstrates that Mg distribution on the entire wafer is very uniform (standard deviation of Mg concentration/mean Mg concentration = 1.38%) with average concentration of ∼6%. The effect of annealing on the Mg diffusion in Zn0.94Mg0.06O/ZnO heterostructures has been investigated in detail by using secondary ion mass spectrometry (SIMS). All the Mg SIMS depth profiles have been fitted by three Gaussian distribution functions. The Mg diffusion coefficient in the as-grown Zn0.94Mg0.06O layer deposited at 700 °C is two orders of magnitude lower than that of annealed samples, which clearly indicates that the deposition temperature of 700 °C is much more beneficial to grow ZnMgO/ZnO heterostructures and quantum wells. 相似文献
14.
We have prepared the gallium oxide (Ga2O3) thin films on sapphire substrates by the metal organic chemical vapor deposition (MOCVD) technique. We have compared the two films with and without the thermal annealing by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and the photoluminescence (PL) spectra. Postdeposition annealing of amorphous Ga2O3 films was found to increase the degree of crystallization and the surface roughness. The PL emission intensities of bands in the blue–green and the ultraviolet regions increased by the thermal annealing. 相似文献
15.
Influence of Ⅴ/Ⅲ ratio on the structural and photoluminescence properties of In0.52AlAs/In0.53GaAs metamorphic high electron mobility transistor grown by molecular beam epitaxy 下载免费PDF全文
A series of metamorphic high electron mobility transistors (MMHEMTs) with different Ⅴ/Ⅲ flux ratios are grown on CaAs (001) substrates by molecular beam epitaxy (MBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum Ⅴ/Ⅲ ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm^2/(V.s) and 3.26×10^12cm^-2 respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the Ⅴ/Ⅲ ratio, for which the reasons are discussed. 相似文献
16.
S.C. Hung P.J. Huang W.Y. Uen S.J. Pearton C.C. Chiang G.C. Chi 《Applied Surface Science》2009,255(15):6809-6813
Heteroepitaxial ZnO epilayers were grown on Si(1 1 1) substrates using a vertical geometry atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) system. The growth temperature was varied from 550 °C to 650 °C in steps of 25 °C. The ZnO growth rate and surface morphology were strong functions of the growth temperature and ranged from ∼0.16 μm/h to 1.36 μm/h. The surface morphology of the ZnO films changed from granular to sharp tips as the growth temperature increased. The effect of buffer thickness was also examined, and was found to have a strong effect on the optical properties of the ZnO. An optimized growth condition for ZnO epilayers was found at 625 °C, producing a FWHM in the room temperature photoluminescence (PL) spectrum of 4.5 nm and a preferred growth orientation along the (0 0 2) direction.Transmission electron microscopy images and selected area diffraction patterns showed excellent crystalline quality of both the buffer and ZnO overlayer. When non-optimized growth temperatures were employed, post-growth annealing was found to greatly enhance the ratio of band-edge to deep level emission. 相似文献
17.
J.L. Qi X. Wang W.T. Zheng H.W. Tian C. Liu Y.L. Lu Y.S. Peng G. Cheng 《Applied Surface Science》2009,256(5):1542-1547
The effects of total CH4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm2. 相似文献