首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Thermal degradation of wood treated with flame retardants   总被引:2,自引:0,他引:2  
Wood, one of the most flammable materials, was treated with various compounds containing nitrogen, phosphorus, halogens, and boron. For a study of flame retardance from the standpoint of thermal degradation, the samples were subjected to thermogravimetry (TG), differential thermal analysis (DTA) and differential thermogravimetry (DTG) in nitrogen to determine if there were any characteristic correlations between thermal degradation behaviors and the level of flame retardance. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained using the method of Broido. The energies of activation for the decomposition of samples are found to be from 72 to 109 kJ mol–1. For wood and modified wood, the char yields are found to increase from 10.2 to 30.2%, LOI from 18 to 36.5, which indicates that the flame retardance of wood treated with compounds is improved. The flame retardant mechanism of different compounds has also been proposed.  相似文献   

2.
A novel charring agent poly(p-propane terephthalamide) (PPTA) was synthesized by using terephthaloyl chloride and 1,3-propanediamine through solution polycondensation and it was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for ABS. The thermal degradation behaviour and flame retardancy were investigated, the results showed that PPTA could be effective as a charring agent, the flame retardancy of ABS and the mass of residues improved greatly with the addition of IFR. When the content of APP was 22.5 mass% and PPTA was 7.5 mass%, the limiting oxygen index (LOI) value of IFR-ABS system was found to be 32.4, and class V-0 of UL-94 test was passed. Moreover, the synergistic effects of two different adjuvants AlPi and MnO2 in IFR-ABS system have been studied.  相似文献   

3.

Rigid polyurethane foam/aluminum diethylphosphinate (RUPF/ADP) composites were prepared by one-step water-blown method. Furthermore, scanning electron microscope (SEM), thermal conductivity meter, thermogravimetric analysis (TGA), limiting oxygen index, Underwriters Laboratories vertical burning test (UL-94) and microsacle combustion calorimetry were applied to investigate thermal conductivity, thermal stability, flame retardancy and combustion behavior of RPUF/ADP composites. Thermogravimetric analysis–Fourier transform infrared spectroscopy (TG–FTIR) was introduced to investigate gaseous products in degradation process of RPUF/ADP composites, while SEM and X-ray photoelectron spectroscopy were used to research char residue of the composites. It was confirmed that RPUF/ADP composites presented well cell structure with density of 53.1–59.0 kg m?3 and thermal conductivity of 0.0425–0.0468 W m?1 K?1, indicating excellent insulation performance of the composites. Flame retardant test showed that ADP significantly enhanced flame retardancy of RPUF/ADP composites, RPUF/ADP30 passed UL-94 V-1 rating with LOI of 23.0 vol%. MCC test showed that ADP could significantly decrease peak of heat release rate (PHPR) of RPUF/ADP composites. PHPR value of RPUF/ADP20 was decreased to 158 W g?1, which was 21.8% reduced compared with that of pure RPUF. TG–FTIR test revealed that the addition of ADP promoted the release of CO2, hydrocarbons and isocyanate compound in first-step degradation of RPUF matrix while inhibited the release of CO in second step degradation. Char residue analysis showed that the addition of ADP promoted polyurethane molecular chain to form aromatic and aromatic heterocyclic structure, enhancing strength and compactness of the char. This work associated a gas–solid flame retardancy mechanism with the incorporation of ADP, which presented an effective strategy for preparation of flame retardant RPUF composites.

  相似文献   

4.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

5.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

6.
A novel flame retardant containing phosphorous-nitrogen structure, the ammonium salt of 2-hydroxyl-5,5-dimethyl-2,2-oxo-1,3,2-dioxapho sphorinane (PNOH), was synthesized and its structure was characterized by 1H NMR and FTIR spectra. PNOH was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for polyvinyl alcohol (PVA). When a few amounts (0.5%) of metal chelates were added, the flame retardancy of the IFR-PVA systems was significantly improved, having a high LOI value of 34.2 in a total IFR loading of 15 wt.%. In order to have an understanding of the resulting flame retardant effects, the thermal degradation behaviors of IFR-PVA systems were investigated by thermogravimetric analysis (TGA), and the morphology and structures of residues generated in different conditions were investigated by scanning electronic microscopy (SEM) and FTIR spectra. The results show that NiSAO can promote the thermal stability of the IFR-PVA; the residual char containing polyphosphoric or phosphoric acid is formed during the combustion; the formation of a continuous and dense char layer could inhibit the transmission of heat during contacting with flame and shows good flame retardancy.  相似文献   

7.
The focus of this study is an investigation of the effect of oxidation state of phosphorus in phosphorus-based flame retardants on the thermal and flame retardant properties of polyurea and epoxy resin. Three different oxidation states of phosphorus (phosphite, phosphate and phosphine oxide) additives, with different thermal stabilities at a constant phosphorus content (1.5 wt.%) have been utilized. Thermal and flame retardant properties were studied by TGA and cone calorimetry, respectively. The thermal stability of both polymers decreases upon the incorporation of phosphorus flame retardants irrespective of oxidation state and a greater amount of residue was observed in the case of phosphite. Phosphate was found to be better flame retardant in polyurea, whereas phosphite is suitable for epoxy resin. Phosphite will react with epoxy resin by trans-esterification, which is demonstrated by FTIR and 31P NMR. Further, TG–FTIR and XPS studies also provide information on flame retardancy of both polymers with phosphorus flame retardants.  相似文献   

8.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A semi‐bio‐based synergist (N, N′, N″‐1, 3, 5‐triazine‐2, 4, 6‐triyltris‐glycine [TTG]) was prepared by using glycine and cyanuric chloride. The structure of TTG was characterized by 1H NMR and Fourier transform infrared spectroscopy. The TTG was applied in polypropylene (PP)/intumescent flame‐retardant compounds to improve its flame retardancy. The flame‐retardant properties of PP compounds were evaluated by limiting oxygen index and vertical burning tests (UL‐94). The results showed that 17 wt% intumescent flame‐retardant and 1 wt% TTG makes PP achieve the UL‐94 V‐0 rating without drippings, and the limiting oxygen index value is increased to 29.5 vol%. The thermal degradation behavior and char morphology of PP compounds were investigated by thermogravimetric analysis and scanning electron microscopy. The results indicated that TTG accelerates the formation of char layer, regulates the porous structure of char layer, and enhances its barrier property. Therefore, the temperatures of PP compound after two ignitions during the UL‐94 test are decreased significantly as shown in infrared thermal imaging. In addition, the combustion characteristics of PP compounds were investigated by cone calorimeter. The peak of heat release rate (PHRR) of PP compound is 67% reduced, and the tPHRR is delayed from 223 to 430 seconds, indicates that the combustion risk of PP compound is reduced.  相似文献   

10.
A novel silicon-containing trifunctional cycloaliphatic epoxide resin tri(3,4-epoxycyclohexylmethyloxy) phenyl silane (TEMPS) was synthesized and characterized by FTIR, 1H NMR, 13C NMR, and 29Si NMR spectroscopic analysis. A series of flame-retardant formulations by blending TEMPS with a commercial epoxide resin DGEBA (EP828) in different ratios were prepared, and exposed to a medium pressure lamp to form the cured films in the presence of diaryliodonium hexafluorophosphate salt as a cationic photoinitiator. The thermal degradation behaviors of the cured films were evaluated by thermogravimetric analysis. The char yields under nitrogen and air atmospheres increased along with the TEMPS content. The limiting oxygen index (LOI) value increased from 22 for EP828 to 30 for TEMPS80, demonstrating the improved flame retardancy. The data from the dynamic mechanical thermal analysis showed that TEMPS had good miscibility with EP828. The T s and T g both decreased from 93 and 138 to 78 and 118 °C, respectively. The crosslinking density (ν e) increased along with the TEMPS content. The mechanical property measurements indicated that the addition of TEMPS led to a decrease in the tensile strength and an increase in the elongation-at-break.  相似文献   

11.

The flammability and the thermal oxidative degradation kinetics of expandable graphite (EG) with magnesium hydroxide (MH) in flame‐retardant polypropylene (PP) composites were studied by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results show that EG is a good synergist for improving the flame retardancy of PP/MH composite and the effect is enhanced with decreasing EG particle size. The Kissinger method and Flynn‐Wall‐Ozawa method were used to determine the apparent activation energy (E) for degradation of PP and flame retarded PP composites. The data obtained from the TGA curve indicate that EG markedly increases the thermal degradation temperature of PP/MH composites and improves the thermal stability of the composites. The kinetic results show that the values of E for degradation of flame retarded PP composites is much higher than that of neat PP, especially PP/MH composites with suitable amount of EG, which indicates that the flame retardants used in this work have a great effect on the mechanisms of pyrolysis and combustion of PP.  相似文献   

12.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

13.
A novel epoxy-terminated hyperbranched polyphosphate (E-HBPP) was synthesized by employing an A2 + B3 polycondensation and characterized by FTIR, 1H NMR and GPC. E-HBPP was used as a reactive-type flame retardant for diglycidyl ether of bisphenol-A/m-phenylene diamine (DGEBA/mPDA) system. A series of flame retardant resins were prepared and their flame retardancy was monitored by the limiting oxygen index (LOI). The results showed that the LOI value of the cured samples and the degree of expansion of the formed char after burning increased along with the E-HBPP content. Their thermal degradation behaviors were investigated by thermogravimetric analysis and in situ FTIR and showed that the phosphate group of E-HBPP first degraded to form poly(phosphoric acid)s at around 300 °C, which had a major contribution to form the compact char to protect the sample from further degradation. The dynamic mechanical thermal properties were studied by dynamic mechanical thermal analysis (DMTA) and the results showed a good miscibility between E-HBPP and DGEBA. The mechanical properties of the cured films were also investigated. Less than 20% E-HBPP addition improved both the tensile strength and elongation at break.  相似文献   

14.
A flame retardant for wood impregnation based on a magnesium complex containing phosphorus and nitrogen was developed. It considerably reduces the wood loss in fire tests. Application of the flame retardant in an amount of 300 g m–2 allows preparation of materials with the fire performance corresponding to group I of materials. The mechanism of the fireproofing action of the flame retardant on wood and the thermal degradation of the impregnated wood were studied.  相似文献   

15.
Flame retardants from vanillin when utilized together with ammonium polyphosphate (APP) yield excellent synergistic flame retardancy toward epoxy resins. Bisphenol A epoxy resins have been widely used due to their excellent mechanical properties, chemical resistance, electrical properties, adhesion, etc., while they are flammable. Environment‐friendly and bio‐based flame retardants have captured increasing attention due to their ecological necessity. In this paper, 3 bio‐based flame retardants were synthesized from abundant and more importantly renewable vanillin, and their chemical structures were determined by 1H NMR and 13C NMR. They were used together with APP (an environment‐friendly commercial flame retardant) to improve the fire resistance of bisphenol A epoxy resin. With the addition APP content of 15 phr, the modified bisphenol A epoxy resin could reach UL‐94V0 rating during vertical burning test and limit oxygen index values of above 35%, but reducing APP content to 10 phr, the flame retardancy became very poor. With the total addition content of 10 phr, the epoxy resins modified by 7 to 9 phr APP and 1 to 3 phr bio‐based flame retardants with epoxy groups or more benzene rings showed excellent flame retardancy with UL‐94V0 rating and limit oxygen index values of around 29%. The Tgs of the epoxy resins could be remained or even increased after introducing bio‐based flame retardants, as the control; those of APP alone‐modified epoxy resins compromised a lot. The green synergistic flame‐retardant systems have a great potential to be used in high‐performance materials.  相似文献   

16.
Molybdenum trioxide (MoO3) microrods, nanofibers, and nanoplates were synthesized via the hydrothermal method and high‐temperature calcination method, respectively. Then the MoO3 was added into polyurethane elastomer, respectively. The flame retardancy and smoke suppression of the composites added with different MoO3 were studied by thermal gravimetric analysis, cone calorimeter, and smoke density. The results show that the three kinds of MoO3 with different morphologies could promote the formation of char and possess flame retardancy and smoke suppression, and MoO3 nanofibers exhibit a higher degree of flame retardancy, and 1 wt% addition could make the peak heat release rate of polyurethane elastomer composites reduce from 881.6 kW m?2 for a pure sample to 343.4 kW m?2, a decrease by 61.0%. As for smoke suppression, MoO3 nanoplates possess the best smoke suppression; 5 wt% could decrease a pure sample's smoke density by 41.3% from 361 to 212. Moreover, the char residue of composites after combustion was analyzed by Raman spectra and X‐ray photoelectron spectroscopy, and the flame retardancy and smoke suppression mechanisms of MoO3 were discussed.  相似文献   

17.
<正>The effect of ammonium sulfamate(AS) content on the flame retardancy of polyamide 6(PA6) was studied.It is found that the limiting oxygen index(LOI) of PA6 increases with the increase of AS content and the flame retardancy of PA6 is significantly improved.The morphology of the residues after combustion was examined by means of scanning electron microscopy(SEM).SEM results show that AS facilitates the formation of the intumescent char layer with honeycomb-like structure,which inhibits the transfer of heat and mass,and thus improves the flame retardancy of PA6.The thermal degradation of AS flame retarded PA6 was studied by thermogravimetric analysis(TGA).The Kissinger method was applied to estimate the activation energy(E_a) of the degradation.The activation energy of the thermal degradation of PA6 decreases by adding AS,indicating that AS can promote the degradation of PA6.  相似文献   

18.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A flame-retardant wood was prepared using a series of insoluble molybdates through the double bath technique. The flame retardancy of the wood samples was studied with the limiting oxygen index (LOI) method. The relationships between the flame-retardant performance and the thermal property of wood were studied by the thermogravimetry (TG), derivative thermogravimetry (DTG), differential thermal analysis (DTA), scanning electron microscopy (SEM), and the thermogravimetry–mass spectrometry (TG–MS) analysis methods. The results showed that the insoluble molybdates, which were precipitated into the wood by the double bath technique, can obviously improve the flame retardancy of wood. Similarly, the transition metal molybdates showed higher flame-retardant efficiency than the main group metal molybdates do, which probably due to the thermal barrier effect that Fe2(MoO4)3 acts during the combustion of the samples. At the same time, Fe2(MoO4)3 catalyzed the dehydration and carbonization reactions of wood, and caused an increase in the amount of char produced, and an improvement of the stability of the char residue. Moreover, the mass spectrometry results indicated that the excess transition metal ions speed up the deep decomposition of the char residue, and resulting in the smoldering of wood.  相似文献   

20.
《先进技术聚合物》2018,29(6):1718-1726
Polymer‐carbon nanotube nanocomposites are extensively investigated for microelectronics and aerospace applications. In this study, novel polyimide/f‐MWCNT nanocomposites made from 2,4‐bis(4‐aminophenylamido)‐6‐chloroquinazoline, pyromellitic dianhydride and functionalized‐Multi Walled Carbon Nanotubes (f‐MWCNT) by an efficient microwave assisted method were investigated. The structure of the prepared diamine monomer was confirmed by FT‐IR, 1H‐NMR, and 13C‐NMR spectral techniques. The prepared nanocomposites (Tg values from 338°C to 375°C) show improved thermal property as indicated by differential scanning calorimetry and thermogravimetric analysis. Polyimide/f‐MWCNT nanocomposites were found to have higher dielectric constant, and the limiting oxygen index values of prepared nanocomposites are in the range of 29.5 to 35.5, indicating a high flame retardancy. Additionally, the morphological studies were conducted by X‐ray diffraction and scanning electron microscopy. Overall, it is observed that chemically connected polyimide‐functionalized carbon nanotube nanocomposites could be used for aerospace and microelectronics applications that require high Tg, dielectric constant and high flame retardancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号