首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Let Fn, n≧ 1, denote the sequence of generic filiform (connected, simply connected) Lie groups. Here we study, for each Fn, the infinite dimensional simple quotients of the group C*-algebra of (the most obvious) one of its discrete cocompact subgroups Dn. For Dn, the most attractive concrete faithful representations are given in terms of Anzai flows, in analogy with the representations of the discrete Heisenberg group H3 G3 on L2(T) that result from the irrational rotation flows on T; the representations of Dn generate infinite-dimensional simple quotients An of the group C*-algebra C*(Dn). For n>1, there are other infinite-dimensional simple quotients of C*(Dn) arising from non-faithful representations of Dn. Flows for these are determined, and they are also characterized and represented as matrix algebras over simple affine Furstenberg transformation group C*-algebras of the lower dimensional tori.  相似文献   

2.
Let ? be a ring containing a nontrivial idempotent. In this article, under a mild condition on ?, we prove that if δ is a Lie triple derivable mapping from ? into ?, then there exists a Z A, B (depending on A and B) in its centre 𝒵(?) such that δ(A + B) = δ(A) + δ(B) + Z A, B . In particular, let ? be a prime ring of characteristic not 2 containing a nontrivial idempotent. It is shown that, under some mild conditions on ?, if δ is a Lie triple derivable mapping from ? into ?, then δ = D + τ, where D is an additive derivation from ? into its central closure T and τ is a mapping from ? into its extended centroid 𝒞 such that τ(A + B) = τ(A) + τ(B) + Z A, B and τ([[A, B], C]) = 0 for all A, B, C ∈ ?.  相似文献   

3.
Quaternionic representations of Coxeter (reflection) groups of ranks 3 and 4, as well as those of E 8, have been used extensively in the literature. The present paper analyses such Coxeter groups in the Clifford Geometric Algebra framework, which affords a simple way of performing reflections and rotations whilst exposing more clearly the underlying geometry. The Clifford approach shows that the quaternionic representations in fact have very simple geometric interpretations. The representations of the groups A 1 × A 1 × A 1, A 3, B 3 and H 3 of rank 3 in terms of pure quaternions are shown to be simply the Hodge dualised root vectors, which determine the reflection planes of the Coxeter groups. Two successive reflections result in a rotation, described by the geometric product of the two reflection vectors, giving a Clifford spinor. The spinors for the rank-3 groups A 1 × A 1 × A 1, A 3, B 3 and H 3 yield a new simple construction of binary polyhedral groups. These in turn generate the groups A 1 × A 1 × A 1 × A 1, D 4, F 4 and H 4 of rank 4 and their widely used quaternionic representations are shown to be spinors in disguise. Therefore, the Clifford geometric product in fact induces the rank-4 groups from the rank-3 groups. In particular, the groups D 4, F 4 and H 4 are exceptional structures, which our study sheds new light on. IPPP/12/26, DCPT/12/52  相似文献   

4.
We study the symmetric positive semidefinite solution of the matrix equation AX 1 A T + BX 2 B T = C, where A is a given real m×n matrix, B is a given real m×p matrix, and C is a given real m×m matric, with m, n, p positive integers; and the bisymmetric positive semidefinite solution of the matrix equation D T XD = C, where D is a given real n×m matrix, C is a given real m×m matrix, with m, n positive integers. By making use of the generalized singular value decomposition, we derive general analytic formulae, and present necessary and sufficient conditions for guaranteeing the existence of these solutions. Received December 17, 1999, Revised January 10, 2001, Accepted March 5, 2001  相似文献   

5.
In [14], we proved that two finitely generated finite-by-nilpotent groups G,H are elementarily equivalent if and only if Z×G and Z×H are isomorphic. In the present paper, we obtain similar characterizations of elementary equivalence for the following classes of structures:

1. the (n+2)-tuples (A 1…,A n+1,f),where n≥2 is an integerA 1…,A n+1 are disjoint finitely generated abelian groups and f A 1×…×A n A n+1: is a n-linear map;

2. the triples (A,B f), where n≥2 is an integerA,B are disjoint finitely generated abelian groups and f : A n B is a n-linear map;

3. the couples (A,f), where n≥2 is an integerA is a finitely generated abelian group and f:A n A is a n-linear map.

For each class, we show that elementary equivalence does not imply isomorphism. In particular, we give an example of two nonisomorphic finitely generated torsion-free Lie rings which are elementarily equivalent.  相似文献   

6.
Keyan Song  Fan Kong 《代数通讯》2013,41(9):3708-3723
For a quiver Q, a k-algebra A, and an additive full subcategory 𝒳 of A-mod, the monomorphism category Mon(Q, 𝒳) is introduced. The main result says that if T is an A-module such that there is an exact sequence 0 → T m  → … → T 0 → D(A A ) → 0 with each T i  ∈ add(T), then Mon(Q, T) =(kQ ? k T); and if T is cotilting, then kQ ? k T is a unique cotilting Λ-module, up to multiplicities of indecomposable direct summands, such that Mon(Q, T) =(kQ ? k T).

As applications, the category of the Gorenstein-projective (kQ ? k A)-modules is characterized as Mon(Q, 𝒢𝒫(A)) if A is Gorenstein; the contravariantly finiteness of Mon(Q, 𝒳) can be described; and a sufficient and necessary condition for Mon(Q, A) being of finite type is given.  相似文献   

7.
8.
Let E,F be two Banach spaces,B(E,F),B+(E,F),Φ(E,F),SΦ(E,F) and R(E,F) be bounded linear,double splitting,Fredholm,semi-Frdholm and finite rank operators from E into F,respectively. Let Σ be any one of the following sets:{T ∈Φ(E,F):Index T=constant and dim N(T)=constant},{T ∈ SΦ(E,F):either dim N(T)=constant< ∞ or codim R(T)=constant< ∞} and {T ∈ R(E,F):Rank T=constant< ∞}. Then it is known that Σ is a smooth submanifold of B(E,F) with the tangent space TAΣ={B ∈ B(E,F):BN(A)-R(A) } for any A ∈Σ. However,for ...  相似文献   

9.
For a cyclic group A and a connected Lie group G with an A-module structure (with the additional assumptions that G is compact and the A-module structure on G is 1-semisimple if ), we define the twisted Weyl group W = W(G,A,T), which acts on T and H 1(A,T), where T is a maximal compact torus of , the identity component of the group of invariants G A . We then prove that the natural map is a bijection, reducing the calculation of H 1(A,G) to the calculation of the action of W on T. We also prove some properties of the twisted Weyl group W, one of which is that W is a finite group. A new proof of a known result concerning the ranks of groups of invariants with respect to automorphisms of a compact Lie group is also given.   相似文献   

10.
We propose a method for explicitly constructing the simple-root generators in an arbitrary finite-dimensional representation of a semisimple quantum algebra or Lie algebra. The method is based on general results from the global theory of representations of semisimple groups. The rank-two algebras A2, B2=C2, D2, and G2 are considered as examples. The simple-root generators are represented as solutions of a system of finite-difference equations and are given in the form of Nl×Nl matrices, where Nl is the dimension of the representation. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 123, No. 2, pp. 264–284, May, 2000.  相似文献   

11.
《代数通讯》2013,41(5):2095-2140
Abstract

We construct an associative algebra A k and show that there is a representation of A k on V ?k , where V is the natural 2n-dimensional representation of the Lie superalgebra 𝔭(n). We prove that A k is the full centralizer of 𝔭(n) on V ?k , thereby obtaining a “Schur-Weyl duality” for the Lie superalgebra 𝔭(n). This result is used to understand the representation theory of the Lie superalgebra 𝔭(n). In particular, using A k we decompose the tensor space V ?k , for k = 2 or 3, and show that V ?k is not completely reducible for any k ≥ 2.  相似文献   

12.
Consider the linear matrix equation A~TXA + B~TYB = D,where A,B are n X n real matrices and D symmetric positive semi-definite matrix.In this paper,the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product.The results are illustrated by two simple numerical examples.  相似文献   

13.
Let ?? be a smooth, compact, oriented Riemannian manifold without boundary. Weak limits of graphs of smooth maps uk:Bn → ?? with an equibounded Dirichlet integral give rise to elements of the space cart2,1 (Bn × ??). Assume that ?? is 1‐connected and that its 2‐homology group has no torsion. In any dimension n we prove that every element T in cart2,1 (Bn × ??) with no singular vertical part can be approximated weakly in the sense of currents by a sequence of graphs of smooth maps uk:Bn → ?? with Dirichlet energies converging to the energy of T. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
Let A be an n?×?n real matrix. A is called {0,1}-cp if it can be factorized as A?=?BB T with bij =0 or 1. The smallest possible number of columns of B in such a factorization is called the {0,1}-rank of A. A {0,1}-cp matrix A is called minimal if for every nonzero nonnegative n?×?n diagonal matrix D, A-D is not {0,1}-cp, and r-uniform if it can be factorized as A=BB T, where B is a (0,?1) matrix with r 1s in each column. In this article, we first present a necessary condition for a nonsingular matrix to be {0,1}-cp. Then we characterize r-uniform {0,1}-cp matrices. We also obtain some necessary conditions and sufficient conditions for a matrix to be minimal {0,1}-cp, and present some bounds for {0,1}-ranks.  相似文献   

15.
The classical surgery theory (see [5] and [23]) computes the structure set Sm (M, rel ?) of manifolds homotopy equivalent to M relative to the boundary. Siebenmann showed that in topological category, the structure set is 4-periodic: Sm(M, rel ?) ? Sm+4(M × D4, rel ?) up to a copy of ?; see [12]. Cappell and Weinberger gave a geometric interpretation of this periodicity in [8]. By using Weinberger's stratified surgery theory (see [24]), we extend this to an equivariant periodicity result for topological manifolds with homotopically stratified actions by compact Lie groups, with D4 replaced by the unit ball of certain group representations. In particular, if G is an odd order group acting on a topological manifold M, then the equivariant stable structure sets satisfy S (M, rel ?) ? S(M × D(?4 ? ?G), rel ?) up to copies of ?. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
In the present article, we explicitly compute the spectrum of the Laplace operator on smooth real-valued and complex-valued functions on connected compact simple Lie groups of rank four with a bi-invariant Riemannian metrics that correspond to the root systems B 4, C 4, and D 4. We also find a connection between the obtained formulas, number theory, and integral quadratic forms in two, three, and four variables.  相似文献   

17.
The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.  相似文献   

18.
19.
Let A be an expanding integer n×n matrix and D be a finite subset of ? n . The self-affine set T=T(A,D) is the unique compact set satisfying the equality \(A(T)=\bigcup_{d\in D}(T+d)\). We present an effective algorithm to compute the Lebesgue measure of the self-affine set T, the measure of the intersection T∩(T+u) for u∈? n , and the measure of the intersection of self-affine sets T(A,D 1)∩T(A,D 2) for different sets D 1, D 2?? n .  相似文献   

20.
《代数通讯》2013,41(3):1253-1270
Abstract

Let G a simple group of type 2 B 2(q) or 2 G 2(q), where q is an odd power of 2 or 3, respectively. The main goal of this paper is to determine the multiplicity free permutation representations of G and A ≤ Aut(G) where A is a subgroup containing a copy of G. Let B be a Borel subgroup of G. If G = 2 B 2(q) we show that there is only one non-trivial multiplicity free permutation representation, namely the representation of G associated to the action on G/B. If G = 2 G 2(q) we show that there are exactly two such non-trivial representations, namely the representations of G associated to the action on G/B and the action on G/M, where M = UC with U the maximal unipotent subgroup of B and C the unique subgroup of index 2 in the maximal split torus of B. The multiplicity free permutation representations of A correspond to the actions on A/H where H is isomorphic to a subgroup containing B if G = 2 B 2(q), and containing M if G = 2 G 2(q). The problem of determining the multiplicity free representations of the finite simple groups is important, for example, in the classification of distance-transitive graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号