首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of K(4)Cu(MoO(4))(3) and nonmagnetic K(4)Zn(MoO(4))(3) have been grown by the flux-growth method. K(4)Cu(MoO(4))(3) can be described as a quantum quasi-1-d antiferromagnet with correlations between neighboring Cu(2+) ions but no magnetic long-range ordering down to 0.4 K. Comparison of the structure and magnetic properties of isostructural A(4)Cu(MoO(4))(3) (A = K, Rb) allows the isolation of the effects of low dimensionality from structural distortion along the Cu-O-Mo chains. The characteristic one-dimensional behavior is hence suppressed to lower the temperature in K(4)Cu(MoO(4))(3) in comparison with that of the Rb analogue. For example, a broad peak in the specific heat is observed ~2.3 K at 0 T, which is consistent with the onset of the quantum spin liquid state.  相似文献   

2.
Single crystals of (NH(4))(4)[(UO(2))(5)(MoO(4))(7)](H(2)O)(5) have been synthesized hydrothermally using (NH(4))(6)Mo(7)O(24), (UO(2))(CH(3)COO)(2).2H(2)O, and H(2)O at 180 degrees C. The phase has been characterized by single-crystal X-ray diffraction using a merohedrally twinned single crystal: it is hexagonal, P6(1), a = 11.4067(5) A, c = 70.659(5) A, V = 7961.9(7) A(3), and Z = 6. The structure is based upon an open framework with composition [(UO(2))(5)(MoO(4))(7)](4-) that is composed of UO(7) pentagonal bipyramids that share vertexes with MoO(4) tetrahedra. The framework has large channels (effective pore size: 4.8 x 4.8 A(2)) parallel to the c axis and a system of smaller channels (effective pore size: 2.5 x 3.6 A(2)) parallel to [100], [110], [010], [110], [110], and [110]. The channels are occupied by NH(4)(+) cations and H(2)O molecules. The topological structure of the uranyl molybdate framework can be described either in terms of fundamental chains of UO(7) pentagonal bipyramids and MoO(4) tetrahedra or in terms of tubular building units parallel to the c axis.  相似文献   

3.
Two new noncentrosymmetric (NCS) polar oxide materials, Zn(2)(MoO(4))(AO(3)) (A = Se(4+) or Te(4+)), have been synthesized by hydrothermal and solid-state techniques. Their crystal structures have been determined, and characterization of their functional properties (second-harmonic generation, piezoelectricity, and polarization) has been performed. The isostructural materials exhibit a three-dimensional network consisting of ZnO(4), ZnO(6), MoO(4), and AO(3) polyhedra that share edges and corners. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate the materials exhibit moderate SHG efficiencies of 100 × and 80 × α-SiO(2) for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Particle size vs SHG efficiency measurements indicate the materials are type 1 non-phase-matchable. Converse piezoelectric measurements resulted in d(33) values of ~14 and ~30 pm/V for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively, whereas pyroelectric measurements revealed coefficients of -0.31 and -0.64 μC/m(2) K at 55 °C for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Frequency-dependent polarization measurements confirmed that all of the materials are nonferroelectric; that is, the macroscopic polarization is not reversible, or "switchable". Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were also performed. First-principles density functional theory (DFT) electronic structure calculations were also done. Crystal data: Zn(2)(MoO(4))(SeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.1809(4) ?, b = 8.3238(7) ?, c = 7.1541(6) ?, β = 99.413(1)°, V = 305.2(1) ?(3), Z = 2; Zn(2)(MoO(4))(TeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.178(4) ?, b = 8.409(6) ?, c = 7.241(5) ?, β = 99.351(8)°, V = 311.1(4) ?(3), Z = 2.  相似文献   

4.
The new uranyl molybdate Ag(6)[(UO(2))(3)O(MoO(4))(5)] (1) with an unprecedented uranyl molybdate sheet has been synthesized at 650 degrees C. The structure (monoclinic, C2/c, a = 16.4508(14) A, b = 11.3236(14) A, c = 12.4718(13) A, beta = 100.014(4)(o), V = 2337.4(4) A(3), Z = 4) contains [(UO(2))(3)O(MoO(4))(5)] sheets composed of triuranyl [(UO(2))(3)O] clusters that are connected by MoO(4) tetrahedra. The topology of the uranyl molybdate sheet in 1 represents a major departure from sheets observed in other uranyl compounds. Of the approximately 120 known inorganic uranyl compounds containing sheets of polyhedra, 1 is the only structure that contains trimers of uranyl pentagonal bipyramids that are connected only by the sharing of vertexes with other polyhedra. The sheets are parallel to (001) and are linked by Ag cations.  相似文献   

5.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

6.
We report the syntheses, crystal structures, and magnetic properties of KMn(2)(H(3)O(2))(MoO(4))(2) (MnH), KMn(2)(D(3)O(2))(MoO(4))(2) (MnD), KFe(2)(H(3)O(2))(MoO(4))(2) (FeH), KFe(2)(D(3)O(2))(MoO(4))(2) (FeD), KCo(2)(H(3)O(2))(MoO(4))(2) (CoH), and KCo(2)(D(3)O(2))(MoO(4))(2) (CoD), and the magnetic structures of MnD and FeD. They belong to the structural variant (space group I2/m) of the mineral natrochalcite NaCu(2)(H(3)O(2))(SO(4))(2) (space group C2/m) where the diagonal within the ac-plane of the latter become one axis of the former. The structure of MnD, obtained from Rietveld refinement of a high-resolution neutron pattern taken at 300 K, consists of chains of edge-sharing octahedra bridged by MoO(4) and D(3)O(2) to form layers, which are connected to K through the oxygen atoms to form the three-dimensional (3D)-network. The X-ray powder diffraction patterns of the other two compounds were found to belong to the same space group with similar parameters. The magnetic susceptibilities of MnH and FeH exhibit long-range ordering of the moments at a Ne?el temperature of 8 and 11 K, respectively, which are accompanied by additional strong Bragg reflections in the neutron diffraction in the ordered state, consistent with antiferromagnetism. Analyses of the neutron data for MnD and FeD reveal the presence of both long- and short-range orderings and commensurate magnetic structures with a propagation vector of (?, 0, ?). The moments are antiferromagnetically ordered within the chains with alternation between chains to generate four nonequivalent nuclear unit cells. For MnD the moments are perpendicular to the chain axis (b-axis) while for FeD they are parallel to the b-axis. The overall total is a fully compensated magnetic structure with zero moment in each case. Surprisingly, for KCo(2)(D(3)O(2))(MoO(4))(2) neither additional peaks nor increase of the nuclear peaks' intensities were observed in the neutron diffraction patterns below the magnetic anomaly at 12 K which was identified to originate from a small quantity of a ferromagnetic compound, Co(2)(OH)(2)MoO(4).  相似文献   

7.
Recent work in the preparation of organically templated metal sulfates under hydrothermal conditions has been extended to include the sulfation of alpha-molybdena through the synthesis of [C(5)H(14)N(2)][(MoO(3))(3)(SO(4))].H(2)O. Single crystals were grown under hydrothermal conditions from molybdenum oxide, water, sulfuric acid, and an enantiomerically pure (R)-2-methylpiperazine source and characterized using both single-crystal X-ray diffraction and infrared spectroscopy. One-dimensional [(MoO(3))(3)(SO(4))](n)(2n-) chains, based on a neutral alpha-molybdena backbone, are connected through an extensive hydrogen-bonding network containing [C(5)H(14)N(2)](2+) cations and occluded water molecules. The direction of the hydrogen bonding is primarily dictated by the nucleophilicity of the respective oxide ligands, as determined using bond valence sums.  相似文献   

8.
The reaction of Pb and Eu with a molten mixture of A(2)Se/P(2)Se(5)/Se produced the quaternary compounds APbPSe(4), A(4)Pb(PSe(4))(2) (A = Rb,Cs), and K(4)Eu(PSe(4))(2). The red crystals of APbPSe(4) are stable in air and water. The orange crystals of A(4)Pb(PSe(4))(2) and K(4)Eu(PSe(4))(2) disintegrate in water and over a long exposure to air. CsPbPSe(4) crystallizes in the orthorhombic space group Pnma (No. 62) with a = 18.607(4) ?, b = 7.096(4) ?, c = 6.612(4) ?, and Z = 4. Rb(4)Pb(PSe(4))(2) crystallizes in the orthorhombic space group Ibam (No. 72) with a = 19.134(9) ?, b = 9.369(3) ?, c = 10.488(3) ?, and Z = 4. The isomorphous K(4)Eu(PSe(4))(2) has a = 19.020(4) ?, b = 9.131(1) ?, c = 10.198(2) ?, and Z = 4. The APbPSe(4) have a layered structure with [PbPSe(4)](n)()(n)()(-) layers separated by A(+) ions. The coordination geometry around Pb is trigonal prismatic. The layers are composed of chains of edge sharing trigonal prisms running along the b-direction. [PSe(4)](3)(-) tetrahedra link these chains along the c-direction by sharing edges and corners with the trigonal prisms. A(4)M(PSe(4))(2) (M = Pb, Eu) has an one-dimensional structure in which [M(PSe(4))(2)](n)()(n)()(-) chains are separated by A(+) ions. The coordination geometry around M is a distorted dodecahedron. Two [PSe(4)](3)(-) ligands bridge two adjacent metal atoms, using three selenium atoms each, forming in this way a chain along the c-direction. The solid state optical absorption spectra of the compounds are reported. All compounds melt congruently in the 597-620 degrees C region.  相似文献   

9.
The title compound belongs to monoclinic,space group C2/c with a=5.2694(1),b=12.6659(4),c=19.4108(2) ,β=91.504(2)°,V=1295.06(5) 3,Z=4 and Dc=5.599 g/cm3. The structure of BaGd2(MoO4)4 contains a MoO4 tetrahedron,a distorted GdO8 polyhedron,and Ba2+ ions in a tenfold coordination. The GdO8 polyhedra are linked together through edge-sharing to give a two-dimensional Gd layer. The MoO4 tetrahedra connected to the Gd atoms are capped up and down the Gd layer through common oxygen apices,thus forming a new Gd-Mo layer. Finally,the Gd-Mo layers are held together through bridging BaO10 polyhedra to form a three-dimensional framework. Since the Ba-μ3-O bond has a large average distance of 2.888 ,this structural characteristic will result in a cleavage along the (001) plane.  相似文献   

10.
The possibility of PO(4)(3-) for MoO(4)(2-) partial substitution in the langbeinite framework has been studied by exploration of the K-Fe(Sc)-Mo(W)-P-O systems using the high-temperature solution method. It was shown that 1/3PO(4)(3-) for MoO(4)(2-) substitution leads to formation of three novel compounds K(2)Fe(MoO(4))(PO(4))(2), K(2)Sc(MoO(4))(PO(4))(2), and K(2)Sc(WO(4))(PO(4))(2) with slightly increased lattice parameters and significant distortion of the anion tetrahedra without structure changes. In contrast, the antiferromagnetic structure is modified by substitution in the low-temperature region. The structural peculiarities are discussed in light of bond-valence sums calculations.  相似文献   

11.
Single-crystal NaY(MoO(4))(2) thin plates dominated by high-energy {001} facets were hydrothermally synthesized under relatively mild conditions, free of organic additives, seeds and templates. The as-obtained NaY(MoO(4))(2) thin plates showed an excellent visible-light-responding photocatalytic activity for degradation of dyes in water.  相似文献   

12.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

13.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

14.
The optical band positions and EPR g factors g(i) (i = x, y, z) of Cu(H(2)O)(6)(2+) clusters in pure Tutton salts M(2)Cu(SO(4))(2)·6H(2)O (M = NH(4), Rb) are calculated from the complete diagonalization (of energy matrix) method based on the cluster approach. In the calculation, the superposition model with the structural data is used to obtain the crystal-field parameters. The calculated results are in reasonable agreement with the experimental values, suggesting that the complete diagonalization method and superposition model are effective in the studies of optical and EPR data. The g factors g(i) of Cu(H(2)O)(6)(2+) clusters in Cu(2+)-doped isomorphous diamagnetic Tutton salts M(2)Zn(SO(4))(2)·6H(2)O are also studied from the same method. It is found that the approximately tetragonally compressed Zn(H(2)O)(6)(2+) octahedra in the host crystals change to the approximately tetragonally elongated Cu(H(2)O)(6)(2+) octahedra in the impurity centers. The causes concerning the Jahn-Teller effect are discussed. It appears that in some cases the octahedral environment of an impurity M(I) in crystals differs from that of the replaced host ion, but is close to the one in the isomorphous pure crystals where M(I) is the host ion rather than the impurity ion.  相似文献   

15.
Cd(C(4)H(4)N(2))(H(2)O)(2)MoO(2)F(4) (C(4)H(4)N(2) = pyrazine, pyz) was synthesized via hydro(solvato)thermal methods and characterized by single-crystal X-ray diffraction methods (P3(2)()21, no. 154, Z = 3, a = 7.4328(7) A, c = 16.376(2) A). Both of the known M(pyz)(H(2)O)(2)MoO(2)F(4) (M = Zn, Cd) compounds are comprised of trans-M(pyz)(2)(OH(2))(2)F(2) and cis-MoO(2)F(4) octahedra that share fluoride vertices to form helical chains along the 3-fold screw axes. Individual chains are bridged to six symmetry-equivalent helices through metal-pyrazine and OH(2)...F and OH(2)...O hydrogen bonds. Structural comparisons of similar oxyfluoride chains demonstrate that they can be varied from linear to helical through (1) the replacement of pyridine or pyrazine by H(2)O molecules and (2) the substitution of cis-directing MoO(2)F(4)(2-) anions in place of trans-directing WO(2)F(4)(2-) or TiF(6)(2-) anions. Infrared absorption (IR) measurements for M = Cd show two distinct O-H stretches corresponding to hydrogen-bonded O-H...F and O-H...O groups. Contrastingly for M = Zn, IR measurements exhibit O-H stretches for averaged hydrogen-bonded O-H...(O/F) groups, free (unbound) O-H groups, and higher energy Mo-F stretches. The IR data suggest a small fraction of the O-H...F hydrogen bonds are broken in the M = Zn analogue as a result of the racemic twinning. Both compounds exhibit nonlinear optical behavior, with second harmonic generation (SHG) intensities, relative to SiO(2), of approximately 0.25 ( = 0.28 pm/V) for the racemically twinned Zn(pyz)(H(2)O)(2)MoO(2)F(4) and approximately 1.0 ( = 0.55 pm/V) for the enantiopure Cd(pyz)(H(2)O)(2)MoO(2)F(4).  相似文献   

16.
The high-temperature (beta-) modification of Hg2MoO4 was prepared by solid-state reaction of HgO with MoO2 at 400 degrees C. Well-crystallized samples of the low-temperature (alpha-) modification of Hg2MoO4 and isotypic Hg2WO4 were obtained by hydrothermal recrystallization of the microcrystalline powders at 180 degrees C. The crystal structures of these transparent yellow compounds were determined by single-crystal X-ray diffractometry. beta-Hg2MoO4: P2(1)/c, Z = 4, a = 511.31(6) pm, b = 901.83(7) pm, c = 1086.0(1) pm, beta = 101.01(3) degrees. alpha-Hg2MoO4 and Hg2WO4: C2/c, Z = 4, a = 873.52(6) and 873.0(1) pm, b = 1155.19(7) and 1147.6(3) pm, c = 493.05(3) and 493.24(6) pm, beta = 115.196(5) degrees and 114.86(1) degrees, respectively. In beta-Hg2MoO4 the molybdenum atoms are tetrahedrally coordinated by oxygen atoms and the MoO4 tetrahedra are linked via Hg2 dumb-bells, thus forming infinite zigzag chains. The low-temperature (alpha-)modification of Hg2MoO4 contains MoO6 octahedra, which are linked via common edges to form zigzag chains, which are further linked via Hg2 dumb-bells, resulting in puckered two-dimensionally infinite sheets. Bonding between adjacent sheets is achieved only via weak (secondary) Hg-O bonds of 254.8 pm, while the strong Hg-O bonds of the nearly linear O-Hg-Hg-O groups within the sheets have a length of 214.8 pm. The Hg-Hg bond lengths are practically the same in the three compounds with 252.3(1), 253.49(7), and 253.3(1) pm in beta-Hg2MoO4, alpha-Hg2MoO4, and Hg2WO4, respectively. The average Mo-O distances within the MoO4 tetrahedra and the MoO6 octahedra are 176.2, and 196.5 pm, respectively. The structural chemistry of these compounds is discussed together with that of previously reported mercury I and II molybdates and tungstates.  相似文献   

17.
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octahedra separated and linked by layers of isolated MoO4 tetrahedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octahedra.  相似文献   

18.
Nd3+: Li3Ba2La3(MoO4)8 crystal has been grown from a flux of Li2MoO4 by the top seeded solution growth method (TSSG) and its structure was confirmed by X-ray diffraction. The polarized absorption spectra, fluorescence spectra and fluorescence decay curve of the crystal were measured. The main spectral parameters were calculated by the Judd-Ofelt theory and compared with other Nd-doped crystals. The broad absorption bands and the large absorption cross sections around 805 nm indicate that the crystal is very suitable for diode-laser pumping. The broad emission bands around 1060 nm show that the crystal is a potential medium for tunable and short pulse lasers. The quantum efficiency of the crystal is up to 95%, which is higher than the value for Nd3+:YVO4 and Nd3+:YAG and comparable to that of other disordered molybdate crystals. The excellent spectroscopic properties show that Nd3+:Li3Ba2La3(MoO4)8 crystal may be regarded as a potential solid state laser host material for diode laser pumping.  相似文献   

19.
Xu Z  Mitzi DB 《Inorganic chemistry》2003,42(21):6589-6591
The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.  相似文献   

20.
The tetrahedral triphenylsiloxy complex MoO(2)(OSiPh(3))(2) (1) and its Lewis base adduct with 2,2'-bipyridine, MoO(2)(OSiPh(3))(2)(bpy) (2), were prepared and characterised by IR/Raman spectroscopy, and thermogravimetric analysis. Both compounds catalyse the epoxidation of cis-cyclooctene at 55 degrees C using tert-butylhydroperoxide (t-BuOOH) is decane as the oxidant, giving 1,2-epoxycyclooctane as the only product. The best results were obtained in the absence of a co-solvent (other than the decane) or in the presence of 1,2-dichloroethane, while much lower activities were obtained when hexane or acetonitrile were added. With no co-solvent, catalyst 1 (initial activity 272 mol x molMo(-1) x h(-1)for a catalyst:substrate: oxidant molar ratio of 1:100:150) is much more active than 2(initial activity 12 mol x molMo(-1) x h(-1)). The initial reaction rates showed first order dependence with respect to the initial concentration of olefin. With respect to the initial amount of oxidant, the rate order dependence for 1 (1.9) was higher than that for 2 (1.6).The dependence of the initial reaction rate on reaction temperature and initial amount of catalyst was also studied for both catalysts. The lower apparent activation energy of 1 (11 kcal x mol(-1)) as compared with 2 (20 kcal x mol(-1)) is in accordance with the higher activity of the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号