首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The symmetric fractional derivative is introduced and its properties are studied. The Euler-Lagrange equations for models depending on sequential derivatives of type are derived using minimal action principle. The Hamiltonian for such systems is introduced following methods of classical generalized mechanics and the Hamilton’s equations are obtained. It is explicitly shown that models of fractional sequential mechanics are non-conservative. The limiting procedure recovers classical generalized mechanics of systems depending on higher order derivatives. The method is applied to fractional deformation of harmonic oscillator and to the case of classical frictional force proportional to velocity. Presented at the 10th International Colloquium on Quantum Groups: “Quantum Groups and Integrable Systems”, Prague, 21–23 June 2001.  相似文献   

2.
This work presents a lossy partial differential acoustic wave equation including fractional derivative terms. It is derived from first principles of physics (mass and momentum conservation) and an equation of state given by the fractional Zener stress-strain constitutive relation. For a derivative order α in the fractional Zener relation, the resulting absorption α(k) obeys frequency power-laws as α(k) ∝ ω(1+α) in a low-frequency regime, α(k) ∝ ω(1-α/2) in an intermediate-frequency regime, and α(k) ∝ ω(1-α) in a high-frequency regime. The value α=1 corresponds to the case of a single relaxation process. The wave equation is causal for all frequencies. In addition the sound speed does not diverge as the frequency approaches infinity. This is an improvement over a previously published wave equation building on the fractional Kelvin-Voigt constitutive relation.  相似文献   

3.
In this paper we study the fractional Lagrangian of Pais–Uhlenbeck oscillator. We obtained the fractional Euler–Lagrangian equation of the system and then we studied the obtained Euler–Lagrangian equation numerically. The numerical study is based on the so-called Grünwald–Letnikov approach, which is power series expansion of the generating function (backward and forward difference) and it can be easy derived from the Grünwald–Letnikov definition of the fractional derivative. This approach is based on the fact, that Riemman–Liouville fractional derivative is equivalent to the Grünwald–Letnikov derivative for a wide class of the functions.  相似文献   

4.
Anomalous diffusion on a comb structure consisting of a one-dimensional backbone and lateral branches (teeth) of random length is considered. A well-defined classification of the trajectories of random walks reduces the original problem to an analysis of classical diffusion on the backbone, where, however, the time of this process is a random quantity. Its distribution is dictated by the properties of the random walks of the diffusing particles on the teeth. The feasibility of applying mean-field theory in such a model is demonstrated, and the equation for the Green’s function with a partial derivative of fractional order is obtained. The characteristic features of the propagation of particles on a comb structure are analyzed. We obtain a model of an effective homogeneous medium in which diffusion is described by an equation with a fractional derivative with respect to time and an initial condition that is an integral of fractional order. Zh. éksp. Teor. Fiz. 114, 1284–1312 (October 1998)  相似文献   

5.
Two model examples of the application of fractional calculus are considered. The Riemann–Liouville fractional derivative with 0 < α ≤ 1 was used. The solution of a fractional equation, which describes anomalous relaxation and diffusion in an isotropic fractal space, has been obtained in the form of the product of a Fox function by a Mittag-Leffler function. The solution is simpler than that given in Ref. 6 and it generalizes the result reported in Ref. 7. For the quantum case, a solution of the generalized Neumann–Kolmogorov fractional quantum-statistical equation has been obtained for an incomplete statistical operator which describes the random walk of a quantum spin particle, retarded in traps over a fractal space. The solution contains contributions from quantum Mittag-Leffler (nonharmonic) fractional oscillations, anomalous relaxation, noise fractional oscillations, and exponential fractional diffusion oscillation damping.  相似文献   

6.
A generalized theoretical model is proposed for the structural relaxation of metallic glasses under load. Structural relaxation is treated as a set of irreversible, uncorrelated, two-stage atomic displacements in some regions of the structure, the “relaxation centers.” In loaded samples structural relaxation acquires a directional character, leading to the buildup of plastic deformation in accordance with the magnitude and orientation of the applied mechanical stress. General equations are obtained for creep kinetics including a continuous statistical distribution of the principal activation parameters. These equations are compared with the results of a special experiment. The model is found to provide an adequate interpretation of the observed creep kinetics, except for the first 101–102 seconds after loading. It is argued that the initial stage of creep is determined by reversible atomic realignments in relaxation centers having symmetric two-well potential. Fiz. Tverd. Tela (St. Petersburg) 39, 2008–2015 (November 1997)  相似文献   

7.
We revisit the Mittag-Leffler functions of a real variable t, with one, two and three order-parameters {α,β,γ}, as far as their Laplace transform pairs and complete monotonicity properties are concerned. These functions, subjected to the requirement to be completely monotone for t > 0, are shown to be suitable models for non–Debye relaxation phenomena in dielectrics including as particular cases the classical models referred to as Cole–Cole, Davidson–Cole and Havriliak–Negami. We show 3D plots of the relaxations functions and of the corresponding spectral distributions, keeping fixed one of the three order-parameters.  相似文献   

8.
In this paper, numerical solutions of a reaction-diffusion chemotactic model of fractional orders for bacterial growth will be present. A new solution is constructed in power series. The fractional derivatives are described in the Caputo sense. We compare the experimental result obtained with those obtained by simulation of the chemotactic model without fractional derivatives. The results show that the solution continuously depends on the time-fractional derivative. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fractional derivative used. We present results of numerical simulations to illustrate the method, and investigate properties of numerical solutions. The Adomian’s decomposition method (ADM) is used to find the approximate solution of fractional ‘reaction-diffusion chemotactic model. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

9.
A previous study of the authors published in this journal focused on mechanical wave motion in a viscoelastic material representative of biological tissue [Meral et al., J. Acoust. Soc. Am. 126, 3278-3285 (2009)]. Compression, shear and surface wave motion in and on a viscoelastic halfspace excited by surface and sub-surface sources were considered. It was shown that a fractional order Voigt model, where the rate-dependent damping component that is dependent on the first derivative of time is replaced with a component that is dependent on a fractional derivative of time, resulted in closer agreement with experiment as compared with conventional (integer order) models, such as those of Voigt and Zener. In the present study, this analysis is extended to another configuration and wave type: out-of-plane response of a viscoelastic plate to harmonic anti-symmetric Lamb wave excitation. Theoretical solutions are compared with experimental measurements for a polymeric tissue mimicking phantom material. As in the previous configurations the fractional order modeling assumption improves the match between theory and experiment over a wider frequency range. Experimental complexities in the present study and the reliability of the different approaches for quantifying the shear viscoelastic properties of the material are discussed.  相似文献   

10.
We study the fractional gravity for spacetimes with non-integer fractional derivatives. Our constructions are based on a formalism with the fractional Caputo derivative and integral calculus adapted to nonholonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange–Finsler and Hamilton–Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, ellipsoid gravitational configurations and imbedding of such objects in solitonic backgrounds.  相似文献   

11.
The structural, elastic and thermodynamic characteristics of CeGa2 compound in the AlB2 (space group: P6/mmm) and the omega trigonal (space group: P-3m1) type structures are investigated using the methods of density functional theory within the generalized gradient approximation (GGA). The thermodynamic properties of the considered structures are obtained through the quasi-harmonic Debye model. The results on the basic physical parameters, such as the lattice constant, the bulk modulus, the pressure derivative of bulk modulus, the phase-transition pressure (P t ) from P6/mmm to P-3m1 structure, the second-order elastic constants, Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and the isotropic shear modulus are presented. In order to gain further information, the pressure and temperature-dependent behavior of the volume, the bulk modulus, the thermal expansion coefficient, the heat capacity, the entropy, Debye temperature and Grüneisen parameter are also evaluated over a pressure range of 0–6 GPa and a wide temperature range of 0–1800 K. The obtained results are in agreement with the available experimental and the other theoretical values.  相似文献   

12.
The paper presents fractional Hamilton–Jacobi formulations for systems containing Riesz fractional derivatives (RFD’s). The Hamilton–Jacobi equations of motion are obtained. An illustrative example for simple harmonic oscillator (SHO) has been discussed. It was observed that the classical results are recovered for integer order derivatives.  相似文献   

13.
The models described by fractional order derivatives of Riemann-Liouville type in sequential form are discussed in Lagrangean and Hamiltonian formalism. The Euler-Lagrange equations are derived using the minimum action principle. Then the methods of generalized mechanics are applied to obtain the Hamilton’s equations. As an example free motion in fractional picture is studied. The respective fractional differential equations are explicitly solved and it is shown that the limitα→1+ recovers classical model with linear trajectories and constant velocity. Presented at the 11th Colloquium “Quantum Groups and Integrable Systems”, Prague, 20–22 June 2002.  相似文献   

14.
廖光开  龙志林  许福  刘为  张志洋  杨妙 《物理学报》2015,64(13):136101-136101
采用分数阶黏弹单元替代经典模型中的黏壶, 结合非晶合金在外加载荷作用下的微观结构演化, 建立了以分数阶微积分表示的非晶合金黏弹性本构模型. 并根据Hertz弹性理论及分数阶黏弹性本构模型, 推导了块体非晶合金在纳米压痕球形压头下的位移与载荷及时间关系式. 基于推导的解析式, 对铁基块体非晶合金在表观弹性区的纳米压痕位移与载荷及时间曲线进行了非线性拟合分析. 相较于整数阶模型, 分数阶模型不仅具有较高的拟合精度, 其拟合参数能敏锐地反应加载速率对块体非晶合金黏弹性行为的影响, 且参数的变化规律与载荷作用下非晶合金微观结构演化呈现出较强的相关性.  相似文献   

15.
A quantitative theory of creep in linearly heated metallic glasses is developed in terms of new ideas on the kinetics of irreversible structural relaxation under external mechanical stress. The validity of the resulting flow equation has been confirmed by a specially devised experiment. It is shown that the temperature dependence of Newtonian viscosity is determined by the rate of heating and the energy spectrum of irreversible structural relaxation. Fiz. Tverd. Tela (St. Petersburg) 39, 2186–2190 (December 1997)  相似文献   

16.
The classical binomial process has been studied by Jakeman (J. Phys. A 23:2815–2825, 1990) (and the references therein) and has been used to characterize a series of radiation states in quantum optics. In particular, he studied a classical birth-death process where the chance of birth is proportional to the difference between a larger fixed number and the number of individuals present. It is shown that at large times, an equilibrium is reached which follows a binomial process. In this paper, the classical binomial process is generalized using the techniques of fractional calculus and is called the fractional binomial process. The fractional binomial process is shown to preserve the binomial limit at large times while expanding the class of models that include non-binomial fluctuations (non-Markovian) at regular and small times. As a direct consequence, the generality of the fractional binomial model makes the proposed model more desirable than its classical counterpart in describing real physical processes. More statistical properties are also derived.  相似文献   

17.
In this work we present a technique for the implementation of an ultrafast all-optical temporal differentiator. A photonic Mach–Zehnder interferometer can provide the required spectral response for fractional differentiation within certain fractional order extent. This device shows a good accuracy calculating the fractional time derivatives of the complex field of an arbitrary input optical waveform. Analytical expressions were found relating the photonic Mach–Zehnder parameters and the required spectral characteristics of the differentiator for integer and fractional operation. The introduced concept is supported by numerical simulations.  相似文献   

18.
The main goal of this work is to perform a nonholonomic deformation (Fedosov type) quantization of fractional Lagrange–Finsler geometries. The constructions are provided for a fractional almost K?hler model encoding equivalently all data for fractional Euler–Lagrange equations with Caputo fractional derivative.  相似文献   

19.
In both the oil reservoir engineering and seepage flow mechanics, heavy oil with relaxation property shows non-Newtonian rheological characteristics. The relationship between shear rate g& and shear stress t is nonlinear. Because of the relaxation phenomena of heavy oil flow in porous media, the equation of motion can be written as[1] 2,rrvpqkppqtrrtll秏骣+=-+琪抖桫 (1) where lv and lp are velocity relaxation and pressure retardation times. For most porous media, the above motion equation (1)…  相似文献   

20.
The influence of dissipative effects on classical dynamical models of Celestial Mechanics is of basic importance. We introduce the reader to the subject, giving classical examples found in the literature, like the standard map, the Hénon map, the logistic mapping. In the framework of the dissipative standard map, we investigate the existence of periodic orbits as a function of the parameters. We also provide some techniques to compute the breakdown threshold of quasi-periodic attractors. Next, we review a simple model of Celestial Mechanics, known as the spin-orbit problem which is closely linked to the dissipative standard map. In this context we present the conservative and dissipative KAM theorems to prove the existence of quasi-periodic tori and invariant attractors. We conclude by reviewing some dissipative models of Celestial Mechanics. Among the rotational dynamics we consider the Yarkovsky and YORP effects; within the three-body problem we introduce the so-called Stokes and Poynting–Robertson effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号