首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the intense vorticity regions is studied in numerically simulated homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds numbers, in the rangeRe =35–170, and is found to be organized in coherent, cylindrical or ribbon-like, vortices (worms). At the Reynolds numbers studied, they are responsible for much of the extreme intermittent tails observed in the statistics of the velocity gradients, but their importance seems to decrease at higherRe . Their radii scale with the Kolmogorov microscale and their lengths with the integral scale of the flow, while their circulation increases monotonically withRe . An explanation is offered for this latter scaling, based in the assumed presence of axial inertial waves along their cores, excited by a random background strain of the order of the root mean square vorticity. This explanation is consistent with the presence of comparable amounts of stretching and compression along the vortex cores.
Sommario La struttura di regioni ad intensa vorticità in campi di flusso turbolento omogenei, isotropi ed in equilibrio, simulati numericamente, viene studiata per quattro differenti numeri di Reynolds nell'intervalloRe =35÷170, e si trova che tali regioni si organizzano in vortici coerenti, cilindrici o a forma di nastro (vermi). Con rifermento ai numeri di Reynolds studiati, si vede che tali vortici sono responsabili per gran parte delle code estreme ed intermittenti, osservate nelle statistiche dei gradienti di velocità, ma la loro importanza sembra decrescere a più altiRe . I loro raggi scalano con la microscala di Kolmogorov e le loro lunghezze con la scala integrale del flusso, mentre la loro circolazione cresce monotonicamente conRe . Per quest'ultimo riscalamento viene offerta una spiegazione basata sull'assunzione della presenza di onde inerziali assiali lungo i loro nuclei, eccitate da una deformazione di fondo casuale dell'ordine della radice quadrata della velocità media. Questa spiegazione è consistente con la presenza di incrementi paragonabili di allungamenti e compressioni lungo i nuclei dei vortici.
  相似文献   

2.
Rotating and stably stratified turbulence exhibit not only significant anisotropies but also dynamics, which are qualitatively different from purely rotating or stratified turbulence. Furthermore, the different time scales due to rotation, stratification and the turbulence one open up a wide field of possibilities for the temporal evolution of rotating and stratified turbulence.We analyze results from DNS with different parameters α = f/N by visualizing iso-enstrophy surfaces, the temporal evolution of velocity correlation length scales and angular energy spectra.We retrieve standard results, such as a large anisotropy for small scales in rotating turbulence and a large anisotropy for intermediate scales in the vortex mode of stratified turbulence. Furthermore, at large times we find qualitatively different phenomena for cases α = 10 and α = 0.1 such as modified cascades due to the existence of potential energy or small scale vorticity production respectively.  相似文献   

3.
The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in vis-cous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian struc-tures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.  相似文献   

4.
《力学快报》2020,10(6):377-381
At sufficiently large Reynolds numbers, turbulence is expected to exhibit scale-invariance in an intermediate (“inertial”) range of wavenumbers, as shown by power law behavior of the energy spectrum and also by a constant rate of energy transfer through wavenumber. However, there is an apparent contradiction between the definition of the energy flux (i.e., the integral of the transfer spectrum) and the observed behavior of the transfer spectrum itself. This is because the transfer spectrum T(k) is invariably found to have a zero-crossing at a single point (at k = k*), implying that the corresponding energy flux cannot have an extended plateau but must instead have a maximum value at k = k*. This behavior was formulated as a paradox and resolved by the introduction of filtered/partitioned transfer spectra, which exploited the symmetries of the triadic interactions (J. Phys. A: Math. Theor., 2008). In this paper we consider the more general implications of that procedure for the spectral energy balance equation, also known as the Lin equation. It is argued that the resulting modified Lin equations (and their corresponding Navier–Stokes equations) offer a new starting point for both numerical and theoretical methods, which may lead to a better understanding of the underlying energy transfer processes in turbulence. In particular the filtered partitioned transfer spectra could provide a basis for a hybrid approach to the statistical closure problem, with the different spectra being tackled using different methods.  相似文献   

5.
6.
R.M. Kerr   《Fluid Dynamics Research》2005,36(4-6):249-2002
Recent calculations related to the self-induced collapse of large-scale vortex structures into fine scale, possibly singular, structures in the Euler and Navier–Stokes equations are described. The practical importance of these intense events is their possible role in turbulence through the effects of strong intermittency and how that will direct turbulence modelling. Despite a concerted international effort to simulate these events over a decade ago, their dynamical origin remains largely unknown. A new international collaboration designed to push our understanding of the Euler singularity problem is described. These events are closely related to one of the outstanding mathematical questions of our time: whether solutions of the three-dimensional incompressible Navier–Stokes equations, lying in a bounded domain with finite energy and no external forcing, remain regular for arbitrarily long times (www.claymath.org/Millennium_Prize_Problems).  相似文献   

7.
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas–solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the inhomogeneous structural parameters of turbulence to be optimized. We name this model as the “EMMS-based turbulence model”, and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced convection in an empty room. The numerical results show that the EMMS-based turbulence model improves the accuracy of turbulence modeling due to it considers the principle of compromise in competition between viscosity and inertia.  相似文献   

8.
Computational fluid dynamics simulations employing eddy-viscosity turbulence models remain the baseline numerical tool in the aerospace industry, mainly due to their numerical stability and computational efficiency. However, many industrially relevant cases require a level of accuracy that is not routinely achieved by global turbulence models. The simulation of leading-edge vortices shed at low aspect ratio wings is one such class of flows that remains a challenge for turbulence modelling. A local approach is proposed in which a parametrised eddy-viscosity turbulence model is calibrated using experimental results of configurations and flow conditions similar to the one being analysed. In this paper, the Spalart–Allmaras one-equation model is enhanced with additional source terms, which are exclusively active in the vortex field. An automatic optimisation procedure with experimental data as reference is then applied. The resulting optimised model improves the eddy viscosity distribution for a limited but relevant range of configurations and flow conditions.  相似文献   

9.
The fluid–structure interaction is investigated numerically for a two-dimensional flow (Re=2.5·106) over a sinusoid-pitching foil by the SST (Shear Stress Transport) kω model. Although discrepancies in the downstroke phase, which are also documented in other numerical studies, are observed by comparing with experimental results, our current numerical results are sufficient to predict the mean features and qualitative tendencies of the dynamic stall phenomenon. These discrepancies are evaluated carefully from the numerical and experimental viewpoints.In this study, we have utilized Λ, which is the normalized second invariant of the velocity gradient tensor, to present the evolution of the Leading Edge Vortex (LEV) and Trailing Edge Vortex (TEV). The convective, pressure, and diffusion terms during the dynamic stall process are discussed based on the transport equation of Λ. It is found that the pressure term dominates the rate of the change of the rotation strength inside the LEV. This trend can hardly be observed directly by using the vorticity transport equation due to the zero baroclinic term for the incompressible flow.The mechanisms to delay the stall are categorized based on the formation of the LEV. At the first stage before the formation of the LEV in the upper surface, the pitching foil provides extra momentum into the fluid flows to resist the flow separation, and hence the stall is delayed. At the second stage, a low-pressure area travels with the evolution of the LEV such that the lift still can be maintained. Three short periods at the second stage corresponds to different flow patterns during the dynamic stall, and these short periods can be distinguished according to the trend of the pressure variation inside the LEV. The lift stall occurs when a reverse flow from the lower surface is triggered during the shedding of the LEV. For a reduced frequency kf=0.15, the formation of the TEV happens right after the lift stall, and the lift can drop dramatically. With a faster reduced frequency kf=0.25, the shedding of the LEV is postponed into the downstroke, and the interaction between the LEV and TEV becomes weaker correspondingly. Thus, the lift drops more gently after the stall. In order to acquire more reliable numerical results within the downstroke phase, the Large Eddy Simulation (LES), which is capable of better predictions for the laminar-to-turbulent transition and flow reattachment process, will be considered as the future work.  相似文献   

10.
A multi-vortex model of the vortex sheets shed from the sharp leading edges of slender wings is considered. The method, which is developed within the framework of slender-body theory, is designed to deal with those situations in which more than one centre of rotation is formed on the wing, for example on a slender wing with lengthwise camber or with a strake. Numerical results are presented, firstly for situations where comparison can be made with a vortex sheet model and secondly for cases, such as those described above, where a vortex sheet model is unable to describe the flow. Where comparison is available, agreement is good and in the cases where more than one vortex system is present interesting interactions are obtained.  相似文献   

11.
HOMTY, a code for Large Eddy Simulation of homogeneous isotropic turbulence is proven by successful simulation of two experiments. The role of each term in the equations of motion and the concept of filtering is examined. It is shown that ‘prefiltering’ is unnecessary, and the resulting additional term in the equations, instead of transferring energy to the subgrid scales, backscatters energy from the resolved large wavenumerbers to the small ones. The kinetic energy decay exponent is shown to depend on the low wavenumber part of the velocity spectrum. Pressure statistics are computed and found to be in agreement with previous computations.  相似文献   

12.
This study revealed the three-dimensional instantaneous topologies of the large-scale turbulence structures in the separated flow on the suction surface of wind turbine’s blade during stall delay. These structures are the major contributors to the first two POD (proper orthogonal decomposition) modes. The two kinds of instantaneous flow structures as major contributors to the first POD mode are: (1) extended regions of downwash flow with an upstream upward flow beside it and a compact vortex pair closer to the blade’s leading edge; (2) a large-scale clockwise vortex with strong induced flows. The two kinds of flow structures contributing significantly to the second POD mode are: (1) large counter-rotating vortices inducing strong upward velocities and a series of small vortices; (2) strong downwash flow coming from the leading-edge shear layer with a large and strong vortex on the left side and small vortices upstream. The statistical impacts of these large-scale and energetic structures on the turbulence have also been studied. It was observed that when these turbulence structures were removed from the flow, the peak values of some statistics were significantly reduced.  相似文献   

13.
14.
This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail.  相似文献   

15.
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows   总被引:1,自引:0,他引:1  
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM- model), combining the unified second-order moment two-phase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM- model is also better than the k--kp- model and the k--kp-p- model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.The project supported by the Special Funds for Major State Basic Research of China (G-1999-0222-08), the National Natural Science Foundation of China (50376004), and Ph.D. Program Foundation, Ministry of Education of China (20030007028)  相似文献   

16.
The present paper tests the capability of a standard Reynolds-Averaged Navier–Stokes (RANS) turbulence model for predicting the turbulent heat transfer in a generic trailing-edge situation with a cutback on the pressure side of the blade. The model investigated uses a gradient-diffusion assumption with a scalar turbulent-diffusivity and constant turbulent Prandtl number. High-fidelity Large-Eddy Simulations (LES) were performed for three blowing ratios to provide reliable target data and the mean velocity and eddy viscosity as input for the heat transfer model testing. Reasonably good agreement between the LES and recent experiments was achieved for mean flow and turbulence statistics. The LES yielded coherent structures which were analysed, in particular with respect to their effect on the turbulent heat transfer. For increasing blowing ratio, the LES replicated an also experimentally observed counter-intuitive decrease of the cooling effectiveness caused by the coherent structures becoming stronger. In contrast, the RANS turbulent heat transfer model failed in predicting this behaviour and yielded significantly too high cooling effectiveness. It is shown that the model cannot predict the strong upstream and wall-directed turbulent heat fluxes caused by large coherent structures, which were found to be responsible for the counter-intuitive decrease of the cooling effectiveness.  相似文献   

17.
We applied a technique that defines and extracts “structures” from a DNS dataset of a turbulence variable in a way that allows concurrent quantitative and visual analysis. Local topological and statistical measures of enstrophy and strain-rate structures were compared with global statistics to determine the role of mean shear in the dynamical interactions between fluctuating vorticity and strain-rate during transition from isotropic to shear-dominated turbulence. We find that mean shear adjusts the alignment of fluctuating vorticity, fluctuating strain-rate in principal axes, and mean strain-rate in a way that (1) enhances both global and local alignments between vorticity and the second eigenvector of fluctuating strain-rate, (2) two-dimensionalizes fluctuating strain-rate, and (3) aligns the compressional components of fluctuating and mean strain-rate. Shear causes amalgamation of enstrophy and strain-rate structures, and suppresses the existence of strain-rate structures in low-vorticity regions between enstrophy structures. A primary effect of shear is to enhance “passive” strain-rate fluctuations, strain-rate kinematically induced by local vorticity concentrations with negligible enstrophy production, relative to “active,” or vorticity-generating strain-rate fluctuations. Enstrophy structures separate into “active” and “passive” based on the level of the second eigenvalue of fluctuating strain-rate. We embedded the structure-extraction algorithm into an interactive visualization-based analysis system from which the time evolution of a shear-induced hairpin enstrophy structure was visually and quantitatively analyzed. The structure originated in the initial isotropic state as a vortex sheet, evolved into a vortex tube during a transitional period, and developed into a well-defined horseshoe vortex in the shear-dominated asymptotic state.  相似文献   

18.
This investigation deals with the modification of streamline curvature effects in the k-ε turbulence model for the case of recirculating flows. Based upon an idea that the modification of curvature effects in C2 should not be made in regions where the streamline curvature is small, a hybrid k-ε model extended from the modification originally proposed by Srinivasan and Mongia is developed. A satisfactory agreement of model predictions with experimental data reveals that the hybrid k-ε model can perform better simulation of recirculating turbulent flows.  相似文献   

19.
Prior work has demonstrated the effectiveness of using two-equation closures as the basis for universal, self-adapting turbulence models that are effective at any mesh resolution (Perot and Gadebusch in Phys. Fluids 19:115105, 2007). In order to demonstrate the broad applicability of the fundamental approach, the same behavior is now demonstrated for a second-moment closure (SMC). The SMC has the advantage over the earlier two-equation universal closure of being more accurate in the coarse mesh limit and of having a natural mechanism for backscattering energy from the modeled to the resolved turbulent fluctuations. The mathematical explanation for why Reynolds averaged (RANS) transport equation closures are applicable at any mesh resolution, including the large eddy simulation (LES) regime, is reviewed. It is demonstrated that for the problem of isotropic decaying turbulence, the SMC model produces good predictions at any mesh resolution and with arbitrary initial conditions. In addition, it is shown that the proposed model automatically adapts to the mesh resolution provided. The self-adaptive nature of the method is clearly observed when different initial conditions are used. It is shown that classic RANS models (often thought to produce steady and smooth solutions) can produce three-dimensional, unsteady, and chaotic solutions when generalized correctly and when provided with sufficient mesh resolution. The implications of these observations on the fundamental theories of RANS and LES turbulence modeling are discussed.   相似文献   

20.
A semi-implicit Lagrangian finite difference scheme for 3D shallow water flow has been developed to include an eddy viscosity model for turbulent mixing in the vertical direction. The α-co-ordinate system for the vertical direction has been introduced to give accurate definition of bed and surface boundary conditions. The simple two-layer mixing length model for rough surfaces is used with the standard assumption that the shear stress across the wall region at a given horizontal location is constant. The bed condition is thus defined only by its roughness height (avoiding the need for a friction formula relating to depth-averaged flow, e.g. Chezy, used previously). The method is shown to be efficient and stable with an explicit Lagrangian formulation for convective terms and terms for surface elevation and vertical mixing handled implicitly. The method is applied to current flow around a circular island with gently sloping sides which produce periodic recirculation zones (vortex shedding). Comparisons are made with experimental measurements of velocity using laser Doppler anemometry (time histories at specific points) and surface particle-tracking velocimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号