首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
简单介绍了北京大学在高频四极场(RFQ)加速器方面的研究情况和取得的成果,包括束流动力学研究、RFQ腔的高频特性及工艺加工可行性等。现已研制成功一台26MHz整体分离环型RFQ加速器,其极间电压达82kV,把N^+离子从20keV加速到300keV,证实了这种加速器的优点和可行性。  相似文献   

2.
采用多粒子跟踪程序BEAMPATH 对SSC-LINAC 重离子RFQ 直线加速器进行动力学模拟,分别对RFQ 的接受度、高频特性、束流稳定性、空间电荷效应等进行了分析。该RFQ具有很大的纵向接受度,有利于束流在RFQ中的传输;高频特性研究表明,翼间电压设定在理论值以上时,该RFQ都能保持较好的束流特性;束流稳定性分析结果表明,该RFQ具有很大的束流失配容忍度;空间电荷效应研究表明,当束流强度低于0.5 mA时,束流传输不受影响。综合研究结果表明,53.667 MHz重离子RFQ具有较好的动力学特性,满足SSC-LINAC直线加速器的设计要求。The RFQ beam dynamics of a heavy ion linac was investigated in this paper and the BEAMPATH code was employed in this study. The main research was focused on the beam performances depending on longitudinal acceptance, RF properties, beam instability and space charge effect. The RFQ has large longitudinal acceptance in design, which brings the beam performances well. In the RF parameter study, the beam can keep good transmission in the acceleration even the vane voltage is larger than the theoretical value. It is also shown that the RFQ has a large robustness for the mismatch of the input beam by the analysis of the beam instability.Furthermore, the beam evolution is independent on the space charge effect when the beam current is less than 0.5 emA. The preliminary analysis of the beam dynamics shows that the 53.667 MHz heavy ion RFQ has a promising performance, which meets the requirements of SSC-LINAC.  相似文献   

3.
The progress of the Separated Function RFQ (SFRFQ) accelerator, which can raise the field gradient of acceleration while maintaining the transverse focusing power sufficient for high current beam, is presented. In order to demonstrate the feasibilities of the novel accelerator, a prototype cavity was designed and constructed. Correspondingly, a code SFRFQCODEV1.0 was developed specially for cavity design and beam dynamics simulation. The prototype cavity will be verified as a post-accelerator for ISR RFQ-1000 (Integral Split Ring RFQ) and accelerate O+ from 1 MeV to 1.6 MeV. To inject a higher current oxygen beam for the prototype cavity, the beam current of ISR RFQ-1000 was upgraded to 2 mA. The status of high power and beam test preparation for the prototype cavity are presented in this paper.  相似文献   

4.
The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper.  相似文献   

5.
A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.  相似文献   

6.
A new procedure for the design and simulation of a Radio Frequency Quadrupole (RFQ) accelerator has been developed at the Argonne National Laboratory. This procedure is integrated with the beam dynamics design code DESRFQ and the simulation code TRACK, which are based on three-dimensional field calculations and the particle-in-cell mode beam dynamics simulations. This procedure has been applied to the development of a 162.5 MHz CW RFQ which is capable of delivering a 10 mA proton beam for the Accelerator Driven System (ADS) of the CAS. The simulation results show that this RFQ structure is characterized by the stable values of the beam acceleration efficiency for both the zero current beam and space charge dominated beam. For an average beam current of 10 mA, there is no transverse rms emittance growth, the longitudinal rms emittance at the exit of RFQ is low enough and there is no halo formation. The beam accelerated in the RFQ could be accepted easily and smoothly by the following super-conducting linear accelerator.  相似文献   

7.
为了提高兰州重离子加速器冷却储存环(HIRFL-CSR)的运行效率、改善加速器输出束流品质,并实现几个加速装置分时供束,提高整个重离子加速装置的利用率,特为(HIRFL-CSR)增建一台新的注入器--CSRLINAC。在108.48 MHz的RFQ之后的CSR-LINAC主加速段,主要由一台108.48 MHz和两台216.96 MHz的IH型漂移管直线加速器组成,用于加速荷质比为1/8.5~1/3之间的重离子,其最大的束流流强为3 mA,并将粒子从0.3 MeV/u加速到3.71 MeV/u。运用KONUS动力学原理,在满足设计指标的情况下,首先利用TraceWin程序进行中能束线MEBT设计,后针对高频腔体设计和束流匹配的基本参数的系列讨论,特别是对CSR-LINAC的中能束流匹配线、参数选择和IH型KONUS结构的漂移管直线加速器进行设计模拟优化。最终得出,在保证腔体设计指标和95.3%的传输效率的情况下,该紧凑型直线加速结构经过三个腔体的加速后,束流的纵向归一化均方根发射度增长仅有25%;同时发现,当流强达到3 mA时,存在空间电荷效应,导致其纵向相宽增长约25%,最大横向包络也存在16.5%的涨落。In order to improve the operation efficiency of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR), a heavy ion linac (linear accelerator) was proposed and designed as a new injector for HIRFL-CSR. Following the 108.48 MHz Radio-Frequency Quadrupole (RFQ), three tanks in total with Interdigital H-mode drift tube linac (IH-DTL) structure are installed to boost the beam energy from 0.3 to 3.71 MeV/u, and the beam current of ions with charge-to-mass ratio from 1/8.5 to 1/3 can reach to 3 mA. The first tank operatesat the same frequency as the RFQ, and the rest two operate at 216.96 MHz. The “Combined Zero-Degree Synchronous Particle Structure” (KONUS) beam dynamics was used in the beam dynamics design. The overview of the physics design on the main accelerating components, including RF design and beam dynamics design are introduced in this paper. The optimized structure design, fabrication status and simulation results are presented in this contribution. It shows that under the condition of assurance of 95.3% transmission efficiency, the normalized rms emittance is about 25%. When the beam current is up to 3 mA, owing to the space charge effect, the increase of longitudinal phase spread and transverse envelope are about 25% and 16.3%, respectively.  相似文献   

8.
A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron).The designed injection and output energy are 3.5 keV/u and 143 keV/u,respectively.The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH.Simulation results show that this RFQ structure is characterized by stable values of beam transmission effciency (at least 95%) for both zerocurrent mode and the space charge dominated regime.The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions,and could easily be accepted by Drift Tube Linac (DTL).The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.  相似文献   

9.
The progress of the Separated Function RFQ (SFRFQ) accelerator, which can raise the field gradient of acceleration while maintaining the transverse focusing power sufficient for high current beam, is presented. In order to demonstrate the feasibilities of the novel accelerator, a prototype cavity was designed and constructed. Correspondingly, a code SFRFQCODEV1.0 was developed specially for cavity design and beam dynamics simulation. The prototype cavity will be verified as a post-accelerator for ISR RFQ-1000 (Integral Split Ring RFQ) and  相似文献   

10.
An ECR O~ ion source and LEBT system have been developed for the upgrade of 1MeV Integral Split Ring RFQ at Peking University.To satisfy the requirement of RFQ,a more than 10mA oxygen beam has been extracted at 22kV through a 5mm diameter aperture.Its normalized root-mean-square emmitance is less than 0.1π·mm·mrad,which is required by RFQ accelerator.The LEBT matching section is redesigned upon the bench test results.The preliminary results will be presented in this paper.  相似文献   

11.
Kang  MingLei  Lu  YuanRong  Wang  Zhi  Zhu  Kun  Yan  XueQing  Guo  ZhiYu  Gao  ShuLi  Peng  ShiXiang  Liu  Ao  Fang  JiaXun  Chen  JiaEr 《中国科学:物理学 力学 天文学(英文版)》2011,54(2):222-224
Separated Function RFQ (SFRFQ) was proposed as a post accelerator of RFQ to accelerate heavy ions at low frequency. It introduces gap accelerating in the quadrupole electrodes, and therefore it has higher accelerating efficiency than the conventional RFQ accelerator. The first SFRFQ prototype cavity has been specially designed and constructed as a post accelerator to accelerate O+ beam from 1.03 MeV to 1.64 MeV. Based on accomplishment of low power measurement and high power test, the beam commissioning was carried out to verify its feasibility. The measured energy gain per cell of SFRFQ is 45 keV, which is about 60% higher than that of Peking University Integral Split Ring (ISR) RFQ.  相似文献   

12.
阐述了利用北京大学26MHz 300keV整体分离环高频四极场(ISR RFQ)加速器同时加速同荷质比正负离子的研究结果.分别用O+和O离子的连续束以及脉冲束同时注入,均实现了RFQ加速器对同荷质比正负离子的同时加速.用快靶测得的经RFQ腔同时加速后形成的O+及O离子微脉冲束与预想的正负氧离子微脉冲束相位关系完全一致.证实了同时加速时得到的氧离子束总和明显高于单加速一种离子时得到的氧离子束.在国际上首次实现了用RFQ加速器同时加速同荷质比的正负离子.  相似文献   

13.

A mini-vane four-rod radio frequency quadruple (RFQ) accelerator has been built for neutron imaging. The RFQ will operate at 201.5 MHz, and its length is 2.7 m. The original electric field distribution along the electrodes is not flat. The resonant frequency needs to be tuned to the operating value. And the frequency needs to be compensated for temperature change during high power RF test and beam test. As tuning such a RFQ is difficult, plate tuners and stick tuners are designed. This paper will present the tuners design, the tuning procedure, and the RF properties of the RFQ.

  相似文献   

14.
A new procedure for the design and simulation of a Radio Frequency Quadrupole (RFQ) accelerator has been developed at the Argonne National Laboratory. This procedure is integrated with the beam dynamics design code DESRFQ and the simulation code TRACK, which are based on three-dimensional field calculations and the particle-in-cell mode beam dynamics simulations. This procedure has been applied to the development of a 162.5 MHz CW RFQ which is capable of delivering a 10 mA proton beam for the Accelerator Driven System (ADS) of the CAS. The simulation results show that this RFQ structure is characterized by the stable values of the beam acceleration efficiency for both the zero current beam and space charge dominated beam. For an average beam current of 10 mA, there is no transverse rms emittance growth, the longitudinal rms emittance at the exit of RFQ is low enough and there is no halo formation. The beam accelerated in the RFQ could be accepted easily and smoothly by the following super-conducting linear accelerator.  相似文献   

15.
A 52 MHz Radio Frequency Quadrupole(RFQ)linear accelerator(linac)is designed to serve as an initial structure for the SSC-Linac system(injector into Separated Sector Cyclotron).The designed injection and output energy are 3.5 keV/u and 143 keV/u,respectively.The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell(PIC)code BEAMPATH.Simulation results show that this RFQ structure is characterized by stable values of beam transmission efficiency(at least 95%)for both zerocurrent mode and the space charge dominated regime.The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions,and could easily be accepted by Drift Tube Linac(DTL).The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.  相似文献   

16.
The Rare isotope Accelerator Of Newness(RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project(RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to200-MeV/u-uranium with continuous wave(CW) power of 400 k W to support research in various scientific fields.Its system consists of an ECR ion source, LEBTs with 10 ke V/u, CW RFQ accelerator with 81.25 MHz and 500 ke V/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator(QWR) section with 81.25 MHz and a Half Wave Resonator(HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton,deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 ke V/u to 1.5 MeV/u and currents in the m A range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D~+RFQ design. The D~+RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed.  相似文献   

17.
作为直线加速器的前级聚焦加速部分,RFQ(射频四极场) 在束流动力学和运行稳定性上都应表现良好,需要保持电场平整和电磁强耦合。为实现这两个目标,提出并研究了窗耦合结构。针对工作频率为81.25 MHz 的1 m长模型腔,利用三维电磁仿真软件CST MWS微波工作室对传统的四翼型、四杆型高频结构进行了仿真,并重点研究了窗耦合型结构。对开窗的对称方式、开窗的个数和大小等进行了分析,发现合适的窗耦合结构能保持较为紧凑的横向尺寸同时能耗适中,同四翼型结构相比二极模频率也远离了运行频率。为验证模拟结果,建造了一个铝模型腔,并对模型腔进行了冷模测试,实测频率为81.41 MHz,相邻模频率差为10.74 MHz,与模拟结果接近。仿真模拟和模型腔测试的结果表明,窗耦合四翼型结构可作为较低频率RFQ的一种设计。As a focusing and acceleration element in front part of the linear accelerator RFQ, should have ahigh performance in both beam dynamic and operation stability. It requires the electro-magnetic field of RFQ to keep uniform and strongly coupled. In this paper the window coupled structure is proposed and investigated to meet the requirements of RFQ design. Different structures have been compared and analyzed, including four-vane type and four-rod type, and the four-vane type with windows. It was concluded that window-coupled structure is more compact in the transverse dimension with modest power loss and the dipole frequency is far from the operation frequency compare to the normal four-vane structure. A one-meter long and frequency of 81.25 MHz model-cavity of alumimum was employed as a sample and simulated by using the microwave studio of CST. The low power RF test results show that the operating frequecy is 81.41 MHz and the nearest mode frequency separation is 10.74 MHz, which is in good agreement with the simulated values. It is concluded that the window-coupled structure is a candidate for low frequency RFQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号