首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang J  Chen G  Huang J 《The Analyst》2005,130(1):71-75
A glassy carbon electrode (GCE) modified with nickel(II) tetrasulfophthalocyanine (NiTSPc) and Nafion was used for the investigation of the catalytic oxidation of luminol. The modified electrode was found to much more effectively improve the emission of electrochemiluminescence(ECL) of luminol in a solution containing hydrogen peroxide. The enhanced ECL signal corresponded to the catalytic oxidation of both luminol and H(2)O(2) by NiTSPc. Attached Ni(II) on GCE was oxidised to Ni(III) and then used as the catalyst for the chemiluminescence of luminol. The enhanced stability of the ECL signal with Nafion would mainly result from the prevention of the dissolution of NiTSPc and the adsorption of the oxidation product of luminol on the electrode surface. The proposed method enables a detection limit for luminal of 6.0 x 10(-8) mol L(-1) to be achieved in the presence of H(2)O(2) in the neutral solution. The enhanced ECL intensity had a linear relationship with the concentration of luminol in the range of 1.0 x 10(-7)-8.0 x 10(-6) mol L(-1).  相似文献   

2.
Zhou Y  Nagaoka T  Li F  Zhu G 《Talanta》1999,48(2):461-467
A novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO(4). Hydrogen peroxide can be directly determined by luminol-KIO(4)-H(2)O(2) CL system. The detection limit was 3.0x10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0x10(-7)-6.0x10(-4) mol l(-1). The relative standard deviation of H(2)O(2) was 1.1% for 2.0x10(-6) mol l(-1) (N=11). Glucose was indirectly determined through measuring the H(2)O(2) generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H(2)O(2), which, in turn, coupled with the luminol-KIO(4)-H(2)O(2) CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mug ml(-1). The relative standard deviation was 2.1% for 10 mug ml(-1) (N=11). Detection limit of glucose was 0.08 mug ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO(4)-H(2)O(2) CL system. The calibration curve was linear over the range of 1.0x10(-7)-1.0x10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0x10(-7) mol l(-1) (N=11). Detection limit of ascorbic acid was 6.0x10(-8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection.  相似文献   

3.
Nana CG  Jian W  Xi C  Pinga DJ  Feng ZZ  Qing CH 《The Analyst》2000,125(12):2294-2298
It has been found that the electrochemical activity of glutathione was increased greatly at the glassy carbon electrodes modified with 5,10,15,20-tetraphenylporphine ruthenium(II) carbenyl (RuTPP), meso-tetraphenylporphine copper(II) complex (CuTTP) and hemin. It has been also found that glutathione would enhance the electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) at a hemin glassy carbon electrode; the enhanced ECL intensity was linear with the concentration of glutathione in the range of 1 x 10(-7)-1 x 10(-4) mol l-1, based on which method for determination of glutathione has been developed. The detection limit of glutathione was 2 x 10(-8) mol l-1, and the relative standard deviation for 1 x 10(-6) mol l-1 glutathione was 2.7%. The mechanism for this ECL system has been proposed.  相似文献   

4.
It was found that chloroauric acid (HAuCl(4)) could be directly reduced by the luminescent reagent luminol in aqueous solution to form gold nanoparticles (AuNPs), the size of which depended on the amount of luminol. The morphology and surface state of as-prepared AuNPs were characterized by transmission electron microscopy, UV/visible spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, and thermogravimetric analysis. All results indicated that residual luminol and its oxidation product 3-aminophthalate coexisted on the surface of AuNPs through the weak covalent interaction between gold and nitrogen atoms in their amino groups. Subsequently, a luminol-capped AuNP-modified electrode was fabricated by the immobilization of AuNPs on a gold electrode by virtue of cysteine molecules and then immersion in a luminol solution. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The as-prepared modified electrode exhibited an electrochemiluminescence (ECL) response in alkaline aqueous solution under a double-step potential. H2O2 was found to enhance the ECL. On this basis, an ECL sensor for the detection of H2O2 was developed. The method is simple, fast, and reagent free. It is applicable to the determination of H2O2 in the range of 3x10(-7)-1x10(-3) mol L(-1) with a detection limit of 1x10(-7) mol L(-1) (S/N=3).  相似文献   

5.
The electrochemiluminescence (ECL) of Tb3+-enoxacin-Na2SO3 system (ENX system) and Tb3+-ofloxacin-Na2SO3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na2SO3, which is enhanced by Tb3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na2SO3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb3+, indicating that the emission is from the excited state of Tb3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 x 10(-10) -8.0 x 10(-7)mol l(-1) for ENX and 6.0 x 10(-10) -6.0 x 10(-7)mol l(-1) for OFLX, respectively. A theoretical limit of detection is 5.4 x 10(-11)mol l(-1) for ENX and 1.6 x 10(-10)mol l(-1) for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.  相似文献   

6.
Yang M  Liu C  Qian K  He P  Fang Y 《The Analyst》2002,127(9):1267-1271
The electrogenerated chemiluminescence (ECL) behavior of N-(4-aminobutyl)-N-ethylisoluminol (ABEI) was studied and it was found that ABEI could produce emission light when oxidized at a +1.0 V (vs. Ag/AgCl) potential in alkaline solution. The addition of H2O2 markedly improved the ECL sensitivity. The pH value of the solution as well as the H2O2 concentration and working potential all have influences on the ECL response. Under optimal conditions, ABEI can be detected in the range 1.3 x 10(-6)-6.5 x 10(-12) mol L(-1). A detection limit of 2.2 x 10(-12) mol L(-1) for ABEI was obtained at a signal-to-noise ratio of 3. ABEI was then used as a marker to label a known sequence oligonucleotide, which was used as a DNA probe for identifying a target ssDNA immobilized on a PPy modified electrode based on a specific hybridization reaction. The hybridization events were evaluated by the ECL measurements. The results showed that only a complementary sequence could form a double-stranded DNA with the DNA probe and give a strong ECL response. A three-base mismatch sequence and non-complementary sequence have no response. The intensity of the ECL was linearly related to the concentration of the complementary sequence in the range 9.6 x 10(-11)-9.6 x 10(-8) mol L(-1), the detection limit was 3.0 x 10(-11) mol L(-1).  相似文献   

7.
Introduction Rifampicin, a semi synthetic compound, is used primarily in the treatment of tuberculosis, and it is also an excellent amistaphyloco antibiotic when used in combination with other antibiotics, so it is very useful clinically.1 Therefore, the determination of rifampicin has attracted much attention. From now on, techniques for the determination of rifampicin have been primarily based on spectrophotometry,2 double-wavelength thin-layer scan,3 chemiluminescence,4 high performance liq…  相似文献   

8.
Sun J  Xu X  Wang C  You T 《Electrophoresis》2008,29(19):3999-4007
Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated. LODs of 3.3x10(-8) mol/L (0.16 fmol), 1.6x10(-7) mol/L (0.78 fmol) and 3.3x10(-8) mol/L (0.16 fmol) were obtained for methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine, respectively. For practical application, a liquid-liquid extraction with ethyl acetate procedure was developed for urine sample pretreatment and extraction efficiencies higher than 90% were obtained. The established simultaneous CE-EC/ECL was successfully applied for urine sample analysis.  相似文献   

9.
An efficient and highly sensitive chemiluminescence (CL) technique is proposed in the current study for detection of low levels of human serum albumin (HSA). Chemiluminescence (CL) produced during interaction between fluoresceinyl cypridina luciferin analog (FCLA)-1O2 can be modified with the presence of HSA. The conventional CL technique uses a quenching effect of HSA for its quantitative measurement. We are reporting here that the CL intensity can be enhanced, rather than quenched, by the addition of HSA. The CL signal can be linearly correlated with the HSA concentration over a clinically interesting range of 5 x 10(-9) - 8 x 10(-8) mol L(-1), with a detection limit of 2.5 x 10(-9) mol L(-1). The determination result was consistent with that obtained from conventional methods. One possible mechanism of HSA detection technique using CL enhancement approach is discussed. Intermolecular energy transfer in chemiluminescence systems and changes of microenvironment are likely to be contributors of the CL enhancement with HSA.  相似文献   

10.
In this paper a continuous-flow chemiluminescence (CL) system with artificial neural network calibration is proposed for simultaneous determination of rifampicin and isoniazid. This method is based on the different kinetic spectra of the analytes in their CL reaction with alkaline N-bromosuccinimide as oxidant. The CL intensity was measured and recorded every second from 1 to 300 s. The data obtained were processed chemometrically by use of an artificial neural network. The experimental calibration set was 20 sample solutions. The relative standard errors of prediction for both analytes were approximately 5%. The proposed method was successfully applied to the simultaneous determination of rifampicin and isoniazid in a combined pharmaceutical formulation.  相似文献   

11.
Chen H  Lin L  Lin Z  Lu C  Guo G  Lin JM 《The Analyst》2011,136(9):1957-1964
A flow-injection chemiluminescence (CL) system with high sensitivity, selectivity, rapidity, and reproducibility is proposed for the determination of hydrogen peroxide (H(2)O(2)) in water samples. The system is based on the reaction of hydrogen peroxide and hydrogen carbonate solution. Carbon nanospheres (CNSs) prepared from aqueous glucose solution are used to enhance the weak CL. The CL intensity was found to be directly proportional to the concentration of H(2)O(2) present in the sample solutions. The effects upon the CL of several physicochemical parameters, including the concentration of the reagents, the mixing order of the reagents, flow rate, pH, particle size of CNSs and other relevant variables, were studied and optimized. The proposed method exhibited advantages in a larger linear range of 5.0 × 10(-8) to 3.0 × 10(-6) mol L(-1) and a lower limit of detection of 1.0 × 10(-9) mol L(-1) (S/N = 3). This method has been successfully applied to the evaluation of H(2)O(2) in tap water and snow water with recoveries from 80 to 110%. The relative standard deviation (RSD) was less than 8% for intra- and inter-assay precision. Based on the kinetic curve, the CL spectrum, fluorescence spectrum, UV-visible spectrum, and electron spin resonance (ESR) spectrum of NaHCO(3)-H(2)O(2)-CNSs system, a possible CL mechanism was proposed. Superoxide ion radical (˙O(2)(-)) and hydroxide radical (˙OH) were generated during the reaction of NaHCO(3) and H(2)O(2). They were the key intermediates for the production of hole-injected and electron-injected CNSs in the CL process.  相似文献   

12.
The anionic phospholipid cardiolipin (CL) is found almost exclusively in the inner membrane of mitochondria, playing an important role in energy metabolism. Oxidation of CL has been associated with apoptotic events and various pathologies. In this study, electrospray ionization mass spectrometry coupled with liquid chromatography (LC/ESI-MS) was used to identify tetralinoleoyl-cardiolipin (TLCL) modifications induced by the OH(·) radical generated under Fenton reaction conditions (H(2)O(2) and Fe(2+)). The identified oxidation products of TLCL contained 2, 4, 6 and 8 additional oxygen atoms. These long-chain oxidation products were characterized by LC/ESI-MS/MS as doubly [M-2H](2-) and singly charged [M-H](-) ions. A detailed analysis of the fragmentation pathways of these precursor ions allowed the identification of hydroperoxy derivatives of CL. MS/MS analysis indicated that CL oxidation products with 4, 6 and 8 oxygen atoms have one fatty acyl chain bearing 4 oxygen atoms ([RCOO+4O](-)). Even when the TLCL molecule was oxidized by the addition of eight oxygen atoms, one of the acyl chains remained non-modified and one fatty acyl chain contained three or four oxygen atoms. This led us to conclude that under oxidative conditions by the OH(·) radical, the distribution of oxygens/peroxy groups in the CL molecule is not random, even when CL has the same fatty acyl chains in all the positions. Using mass spectrometry, the oxidation products have been unequivocally assigned, which may be useful for their detection in biological samples.  相似文献   

13.
Rao Z  Zhang X  Baeyens WR 《Talanta》2002,57(5):993-998
A new chemiluminescence (CL) flow-injection method is proposed for the determination of 1,3-dichloro-5,5-dimethylhydantoin (DDH). The method is based on the chemiluminescent reaction of DDH and luminol-H(2)O(2) in an alkaline medium (pH 12.0-12.5). The concentration of the analyte shows a good linear relationship with the produced luminescence intensity in the range of 3.0x10(-8) to 8.0x10(-6) mol l(-1). The detection limit of the proposed method is 1.0x10(-8) mol l(-1) and the relative standard deviation (R.S.D.) is 4.7% (n=5) at 5.0x10(-7) mol l(-1). This method was successfully applied to the determination of trace amounts of this disinfectant in water samples obtained from five different swimming pools. Satisfying recovery values were also obtained.  相似文献   

14.
Herein, montmorillonite calcium was exchanged with a cationic surfactant: cetyltrimethylammonium bromide (CTAB). The resulting CTAB-modified montmorillonite calcium (CTAB-MMT) shows higher accumulation efficiency to 4-chlorophenol compared with the unmodified MMT. At the CTAB-MMT-modified carbon paste electrode, the oxidation peak current of 4-chlorophenol remarkably increases. Based on this, a novel, sensitive and convenient electrochemical method was developed for the determination of 4-chlorophenol. The oxidation peak current of 4-chlorophenol is proportional to its concentration over the range from 5.0 x 10(-8) to 1.0 x 10(-5) mol L(-1). The limit of detection is evaluated to be 2.0 x 10(-8) mol L(-1) for 2 min accumulation. Finally this newly proposed method was successfully applied to determine 4-chlorophenol in water samples.  相似文献   

15.
X Zheng  Z Guo  Z Zhang 《Analytical sciences》2001,17(9):1095-1099
Based on a new electrogenerated chemiluminescence (ECL) analytical idea, this paper explains a sensitive and selective flow-injection ECL method using luminol for the determination of isoniazid, based on the sensitizing effect of isoniazid for the weak ECL emission of electrochemically oxidized luminol. Under the optimum experimental conditions, the relative ECL intensity was linear with isoniazid concentration in the range of 4.0 x 10(-8) mol/L to 8.0 x 10(-6) mol/L and with a detecting limit of 2.8 x 10(-8) mol/L.  相似文献   

16.
Ding SN  Xu JJ  Chen HY 《Electrophoresis》2005,26(9):1737-1744
The major goal of this work was to develop a new solid-state electrochemiluminescence (ECL) detector suitable for capillary electrophoresis (CE). The detector was fabricated by coating a sol-gel derived zirconia (ZrO(2))-Nafion composite film on a graphite electrode, then the zirconia-Nafion modified electrode was immersed in tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3) (2+)) solution to immobilize this active chemiluminescence reagent. The voltammetric and ECL behaviors of the detector were investigated and optimized in tripropylamine solution. The ratio of 53% for zirconia in the zirconia-Nafion composite provided the highest luminescence intensity of immobilized Ru(bpy)(3) (2+). The ECL can maintain its stability very well in the phosphate solution in the period of 5-90 h when the solid-state ECL detector was immersed in the solution all the time. The optimum distance of capillary outlet to the solid-state ECL detector has been found to be ca. 50-80 microm for a 75 microm capillary. The effects of ionic strength and pH of ECL solution on peak height were investigated. The CE with solid-state ECL detector system was successfully used to detect tripropylamine, lidocaine, and proline. The detection limits (S/N = 3) were 5 x 10(-9) mol.L(-1) for tripropylamine, 1 x 10(-8) mol.L(-1) for lidocaine and 5 x 10(-6) mol.L(-1) for proline, and the linear ranges were from 1.0 x 10(-8) to 1.0 x 10(-5) mol.L(-1) for tripropylamine, 5.0 x 10(-7) mol.L(-1) to 1.0 x 10(-5) mol.L(-1) for lidocaine and 1.0 x 10(-5) to 1.0 x 10(-3) mol.L(-1) for proline, respectively.  相似文献   

17.
Lin Z  Chen X  Cai Z  Li P  Chen X  Wang X 《Talanta》2008,75(2):544-550
Amino acids with different chemical structures have different abilities in terms of increasing the intensity of chemiluminescence (CL) of tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)3(2+)]. In a flow system, CL caused by the reaction between Ru(bpy)3(3+) and 15 amino acids was observed, but only tryptophan (Trp) and histidine (His) enhanced the intensity obviously, and so the CL of Trp and His and their molecular groups was studied. A calculation of the ionization potentials (IPs) of their N atom indicated that the CL intensities of these compounds depended on their IPs. In addition, the flow system was used for the determination of Trp and His, and the detection limits were 3 x 10(-8) mol L(-1) for His and 2.5 x 10(-9) mol L(-1) for Trp. The calibration curves for the two amino acids were 1.0 x 10(-7) to 5.0 x 10(-3) mol L(-1) for His and 1.0 x 10(-8) to 1.0 x 10(-4) mol L(-1) for Trp. The proposed approach was applied to the determination of His in Ganoderma.  相似文献   

18.
流动注射胶束电化学发光测定过氧化氢的研究   总被引:6,自引:0,他引:6  
建立了一种简易、快速检测过氧化氢的流动注射电化学发光法。本法基于铂丝阳极在 1.3 V(vs.Ag Cl/Ag)时 ,在含有 Na2 CO3 -Na HCO3 缓冲溶液的 KCl支持电解质中现场产生试剂 ,当注入过氧化氢溶液后即产生电化学发光。加入 Triton X-10 0形成的胶束能增强这一体系的发光强度。该法测定过氧化氢的线性范围为 1.0×10 -7~ 1.0× 10 -5 mol/L,对 4.0× 10 -7mol/L的过氧化氢进行 11次测定的相对标准偏差为 2 .6%。用这一方法对雨水中的过氧化氢进行了测定 ,结果满意。  相似文献   

19.
Lei R  Xu X  Yu F  Li N  Liu HW  Li K 《Talanta》2008,75(4):1068-1074
Quercetin greatly enhanced luminol electrochemiluminescence of quercetin in alkaline solution. When the concentration of luminol was 0.1 mol L(-1), the detection limit for quercetin was 2.0x10(-8) mol L(-1) with a linear range from 1.0x10(-7) to 2x10(-5) mol L(-1). The pH and buffer substantially affected ECL intensity. Quercetin was autoxidized in alkaline aqueous solution. The rate of autoxidation of quercetin in various pH buffers and borate concentrations were measured. Borate was found to inhibit quercetin autoxidation and compromise quercetin enhancement effect on luminol ECL to some extent. Two final autoxidation products were identified with LC-MS methods. Autoxidation process was associated with enhancement of ECL intensity. The ROS generated during quercetin autoxidation enhanced the ECL intensity.  相似文献   

20.
We investigated a hypoxanthine (HPX) and xanthine oxidase (XOD) reaction by using a luminol analog 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione sodium salt (L-012)-mediated chemiluminescence (CL) response. Addition of a high activity of superoxide dismutase (SOD), a potent O2* scavenger, and of a high concentration of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a potent spin trapping agent, diminished completely the CL response. Whereas a high concentration of dimethyl sulfoxide (DMSO), as a potent *OH scavenger could not attain to the complete diminishment of the CL response. It has been reported that luminol monoanion reacts with *OH to form luminol radical, and then resultant luminol radical reacts with O2* to elicit CL response. Complete scavenging for *OH is assumed to result in lack of luminol radical, which in turn induces lack of CL response. However, our results did not support the idea. Furthermore, we examined the effect of L-012 on the DMPO-OOH formation in the presence or absence of DMSO in the HPX-XOD system by applying an electron spin resonance (ESR)-spin trapping method. The DMPO-OOH formation was inhibited even in the presence of DMSO, and the rate constant (k2) between L-012 and O2* obtained in the presence of DMSO was 9.77 x 10(2) M(-1) s(-1) and the constant in the absence of DMSO was 2.97 x 10(3) M(-1) s(-1). The data suggests that L-012 is converted to a radical form that reacts with O2* even under the conditions of the absence of *OH. From these, we postulate that the existence of a reactive intermediate oxygen species in the HPX-XOD system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号