首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Chimie》2017,20(3):314-322
In this review, we report the synthesis and photophysical studies of porphyrin–4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) compounds linked either with different covalent bonds or with axial coordination to metalloporphyrin. BODIPY moiety significantly increases the light absorption capability of porphyrins by efficient BODIPY to porphyrin excitation energy transfer. The type of linkage between the two chromophores significantly affects the energy transfer efficiency. The most efficient energy transfer was proved for compounds linked via a cyanuric chloride bridge (∼99% quenching). Therefore, this type of bond seems to be more appropriate choice in constructing porphyrin–BODIPY assemblies for light harvesting applications. Moreover, the functionalization of the conjugates with fullerenes appears to be interesting electron transfer dynamics in the excited state.  相似文献   

2.
Chiral aggregation of oligo(p-phenylene vinylene)-functionalized Zn and free-base porphyrins is observed in water. The formation of mixed assemblies containing both porphyrins results in sequential energy transfer from OPV via zinc porphyrin to free-base porphyrin. Furthermore, the incorporation of C60 as electron acceptor yields a charge separated state by ultimate electron transfer.  相似文献   

3.
Well‐defined supramolecular assemblies of Zn and free‐base porphyrins are constructed through the formation of amidinium–carboxylate salt bridges. A one‐to‐one donor–acceptor pair and a four‐to‐one antenna‐type assembly are investigated. The steady‐state and time‐resolved fluorescence measurements unequivocally showed that efficient singlet–singlet excited energy transfer from the Zn–porphyrin complex to the free‐base porphyrin takes place in these assemblies. Indeed, the observed energy‐transfer rates in both types of assemblies are much faster than those the Förster mechanism would suggest, implying the involvement of an intermolecular through‐bond mechanism.  相似文献   

4.
A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.  相似文献   

5.
Two new dendrimeric supramolecular assemblies bearing twelve and twenty-four fluorenyl peripheral donor groups surrounding an organic core have been prepared and studied. These assemblies are composed of three zinc porphyrins possessing each four (ZnTFP) and eight fluorenyl chromophores (ZnOOFP) linked together by a central tris-pyridyl organic ligand. Due to efficient energy transfer between the fluorenyl arms, which act as antennas, and the Zn centres, which act as emitters; these assemblies behave as red emitters after selective UV or visible irradiation. The kinetic stability of these supramolecular assemblies and its impact on their photophysical properties are discussed.  相似文献   

6.
The goal of artificial photosynthesis is to use the energy of the sun to make high-energy chemicals for energy production. One approach, described here, is to use light absorption and excited-state electron transfer to create oxidative and reductive equivalents for driving relevant fuel-forming half-reactions such as the oxidation of water to O2 and its reduction to H2. In this "integrated modular assembly" approach, separate components for light absorption, energy transfer, and long-range electron transfer by use of free-energy gradients are integrated with oxidative and reductive catalysts into single molecular assemblies or on separate electrodes in photelectrochemical cells. Derivatized porphyrins and metalloporphyrins and metal polypyridyl complexes have been most commonly used in these assemblies, with the latter the focus of the current account. The underlying physical principles--light absorption, energy transfer, radiative and nonradiative excited-state decay, electron transfer, proton-coupled electron transfer, and catalysis--are outlined with an eye toward their roles in molecular assemblies for energy conversion. Synthetic approaches based on sequential covalent bond formation, derivatization of preformed polymers, and stepwise polypeptide synthesis have been used to prepare molecular assemblies. A higher level hierarchial "assembly of assemblies" strategy is required for a working device, and progress has been made for metal polypyridyl complex assemblies based on sol-gels, electropolymerized thin films, and chemical adsorption to thin films of metal oxide nanoparticles.  相似文献   

7.
A comparative study on oligo(p-phenylene vinylene) (OPV)-appended porphyrins containing all trans-vinylene (either hydrophilic or lipophilic) or amide linkages (lipophilic) is presented. The type of supramolecular arrangement obtained in organic solvents proves to be strongly dependent on the nature of the covalent connection. In the case of all trans-vinylene linkages, a J-type intermolecular packing is obtained and the assemblies are only of moderate stability. Conversely, the supramolecular structures obtained from the amide-linked system display an H-type stacking arrangement of enhanced stability and chirality as a consequence of intermolecular hydrogen bonding along the stack direction, favorably interlocking the stacked building blocks. Interestingly, the observed differences in stability and organization are qualitatively illustrated by monitoring the sequential energy transfer process in both types of assemblies. Efficient intramolecular energy transfer from the OPVs (donors) to the respective porphyrin cores is followed by energy transfer from Zn-porphyrin (donor) to free-base porphyrin (acceptor) in both systems. However, the improved intermolecular organization for the amide-linked system increases the energy transfer efficiency along the stack direction. In addition, the water-soluble (OPV)-appended porphyrin system forms highly stable assemblies in an aqueous environment. Nevertheless, the poor energy transfer efficiency along the stack direction reveals a relative lack of organization in these assemblies.  相似文献   

8.
We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies.  相似文献   

9.
Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively F?rster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.  相似文献   

10.
The quantitative excited energy transfer reaction between cationic porphyrins on an anionic clay surface was successfully achieved. The efficiency reached up to ca. 100% owing to the "Size-Matching Rule" as described in the text. It was revealed that the important factors for the efficient energy transfer reaction are (i) suppression of the self-quenching between adjacent dyes, and (ii) suppression of the segregated adsorption structure of two kinds of dyes on the clay surface. By examining many different kinds of porphyrins, we found that tetrakis(1-methylpyridinium-3-yl) porphyrin (m-TMPyP) and tetrakis(1-methylpyridinium-4-yl) porphyrin (p-TMPyP) are the suitable porphyrins to accomplish a quantitative energy transfer reaction. These findings indicate that the clay/porphyrin complexes are promising and prospective candidates to be used for construction of an efficient artificial light-harvesting system.  相似文献   

11.
A modular building-block approach has been developed for the construction of linear amphipathic porphyrin arrays. The reaction of meso-(trifluoromethyl)dipyrromethane and an aldehyde under the conditions of the two-step room temperature porphyrin synthesis affords the trans-substituted porphyrin (13-56% yields). A similar reaction with two different aldehydes provides access to porphyrins bearing two different functional groups. An ethyne porphyrin and an iodo porphyrin (either free base or zinc) are selectively joined via Pd(0)-catalyzed coupling reactions, affording a linear array with porphyrins in defined metalation states. Coupling of a zinc-porphyrin bearing iodo and ester groups with a free base porphyrin bearing ethyne and ester groups yielded the zinc-free base porphyrin dimer. Coupling of a bis-ethyne porphyrin with a porphyrin bearing iodo and ester groups afforded the porphyrin trimer. Cleavage of the esters yielded the amphipathic porphyrin dimer and trimer arrays. The arrays with adjacent zinc and free base porphyrins undergo efficient electronic energy transfer. Both amphipathic porphyrin arrays have been incorporated into L-alpha-phosphatidylcholine vesicles. This versatile synthetic strategy provides access to a family of porphyrin arrays for studies of photophysical processes in supramolecular assemblies.  相似文献   

12.
[structure: see text] A vinylene-linked porphyrin dimer, with no substituents at the beta-positions, has been synthesized by CuI/CsF promoted Stille coupling. In the crystal structure of this dimer, the C(2)H(2) bridge is twisted by 45 degrees relative to the plane of the porphyrins. The absorption, emission spectra, and electrochemistry reveal substantial porphyrin-porphyrin pi-conjugation. The triplet excited-state absorption spectrum of this dimer makes it suitable for reverse saturable absorption at 710-900 nm.  相似文献   

13.
A series of 1,3,5-phenylene-based rigid dendritic porphyrins were synthesized by Suzuki coupling between a porphyrin core and dendron units. The intramolecular energy transfer was studied by absorption and fluorescence spectroscopies. The encapsulation of the porphyrin core within the 1,3,5-phenylene dendron units was found to provide highly efficient energy transfer from the dendron units to the porphyrin core. The dendritic wedge structure affected the energy transfer efficiency. The 1,3,5-phenylene-based rigid dendron units act as highly efficient light-harvesting antennae. These dendritic porphyrins have also been examined as C(60) hosts and substrate-selective oxidation catalysts. The attachment of the second generation of 1,3,5-phenylene-based dendron units with the porphyrin core enabled a stable inclusion of C(60) in toluene. Furthermore, the size and shape of the nanospace in the rigid dendritic porphyrins were found to affect the selectivity of substrates in the catalytic olefin oxidations.  相似文献   

14.
Engineered viruses act as scaffolds to bind porphyrins on their surfaces, exploiting mainly electrostatic interactions. The close proximity between porphyrins and tryptophan residues, exposed on the solvent-accessible surface, leads to an efficient resonant energy transfer, which makes these systems suitable for developing noncovalent antenna systems.  相似文献   

15.
A new and general synthesis of porphyrin dimers is described. The synthesis involves the reaction of dibromoalkanes with phenolic porphyrins, such as 5(4-hydroxyphenyl)-10,15,20-tritolylporphyrin, to form σ-bromoalkyl porphyrin ethers. The latter compounds are then reacted with a second phenolic porphyrin to give porphyrin dimers. A mixed metalloporphyrin dimer has been prepared which contains both V(IV) and Cu(II). The compounds have been examined spectroscopically. The free-base porphyrin dimers show a splitting of the intense Soret band. This is interpreted as indicative of weak singlet energy transfer between the covalently linked porphyrins.  相似文献   

16.
A unique approach to non-covalent electron and energy transfer is described that is based on the formation of salt bridges between oppositely charged porphyrin units. A new class of electrostatically linked dimeric and pentameric porphyrins was synthesized by interaction of novel anionic boron containing porphyrins such as 5-(benzamidodecahydro-closo-dodecaborate)-10,15,20-triphenylporphyrin (N1) and meso-tetrakis-benzamidodecahydro-closo-dodecaborate)porphyrin (N2) and a variety of cationic meso-tetraarylporphyrin units. A bipyridine linked dimer (N1 · bpy · N1) was also prepared by employing N,N′-dimethyl-4,4′-bipyridinium (bpy) as a spacer between two mono-anionic species. A quinone-porphyrin dyad was also prepared for electron or energy transfer demonstration. All the synthesized assemblies were characterized by NMR, IR, UV-Vis, and mass spectroscopy. Significant spectral changes occurred in the absorption spectra of these non-covalent porphyrin assemblies compared to those of the reference monomers, indicating the presence of electronic interaction between the adjacent porphyrin units. Resonance light scattering was also used to study the formation of these assemblies in solution.  相似文献   

17.
Multiporphyrinic assemblies were quantitatively formed, in one step, from a gable‐like zinc(II) bis‐porphyrin ZnP2 and free‐base porphyrins bearing pyridyl groups. The different fragments are held together by axial 4′‐N(pyridyl)–Zn interactions. Formation of a macrocycle ZnP2?(4′‐cisDPyP) and a bis‐macrocycle (ZnP2)2?(TPyP) is discussed. The macrocycle and the bis‐macrocycle were crystallized and studied by X‐ray diffraction, which confirmed the excellent complementarity between the various components. Spectrophotometric and spectrofluorimetric titrations and studies reveal high association constants for both multiporphyrinic assemblies due to the almost perfect geometrical match between the interacting units. As expected, energy transfer from the zinc porphyrin component to the free‐base porphyrin quenches the fluorescence of the zinc porphyrin components in both compounds. But while in ZnP2?(4′‐cis DPyP) sensitization of the emission of the free‐base porphyrin was observed, in (ZnP2)2?(TPyP) excitation of the peripheral Zn porphyrin units does not lead to quantitative sensitization of the luminescence of the free‐base porphyrin acceptor. An unusual HOMO–HOMO electron transfer reaction from ZnP2 to the excited TPyP unit was detected and studied.  相似文献   

18.
Triplet-triplet annihilation based photon upconversion (TTA-UC) were constructed successfully by chiral self-assembly strategy.Enhanced TTA-UC could be obtained in the racemic assemblies compared with the homochiral assemblies.  相似文献   

19.
Photon upconversion (UC) based on triplet-triplet annihilation (TTA) in quasi-solid or solid state has been attracting much research interest due to its great potential applications. To get effective UC, precisely controlled donor-acceptor interaction is vitally important. Chiral self-assembly provides a powerful approach for sophisticated regulation of molecular interaction. Here we report a chiral self-assembly controlled TTA-UC system composed of chiral acceptor and achiral donor. It is found that racemic mixture of acceptors could form straight fibrous nanostructures, which show strong UC emission, while chiral assemblies for homochiral acceptors emit weak upconverted light. The racemic assemblies allow efficient triplet-triplet energy transfer (TTET) and further realize efficient UC emission, while the homochiral assemblies from chiral acceptor produce twisted nanostructures, suppressing efficient triplet energy transfer and annihilation. The establishment of such chiral self-assembly controlled UC system highlights the potential applications of triplet fusion in optoelectronic materials and provides a new perspective for designing highly effective UC systems.  相似文献   

20.
Photochemical energy transfer of non-aggregated cationic porphyrins on an anionic-type clay (Smecton SA) surface was investigated. The efficiency of energy transfer and excited-state quenching in the absence of energy transfer were evaluated at various loading levels of porphyrin on the clay surface and were found to be significantly affected by the loading level. As the latter increased, both energy transfer efficiency and excited-state quenching increased. Judging from the dependency of energy-transfer efficiency on the porphyrin loading level, a partially clustered structure, but without aggregation, of porphyrins on the clay surface is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号