首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Cordierite powder was synthesized via different sol-gel procedures. The use of 29Si NMR spectra of all stages beginning from tetraethoxysilane (TEOS) up to final ceramic powder material is discussed. In the early stages of the sol-gel process all oligomeric structure units can be identified. Spectra of the higher condensed sols only allow the quantification of Qn-groups. MAS spectra of gels heated up to 750 °C show no fine structure to be evaluated. Spectra of samples heated to 1250 °C indicate a sluggish disorder-order transformation from hexagonal α-cordierite to orthorhombic cordierite. Received: 20 May 1996/Accepted: 25 July 1996  相似文献   

2.
Density functional theory at the B3LYP/6-311++G(d,p) level is applied to calculate the (29)Si NMR chemical shifts of a variety of organosiloxane moieties including monomers or precursors for polymerization and representative segments of organosiloxane polymers or thin films. The calculated shifts of two linear dimethylsiloxane compounds, hexamethylcyclotrisiloxane (D3) and octamethylcyclotetrasiloxane (D4), compare well with their known values, having an average error of 3.4 ppm. The same method is applied to structures believed to occur in organosilicate glass thin films deposited using hot-filament chemical vapor deposition (HFCVD) from D3 and D4. The chemical shift at -15 ppm is identified as a cross-linking Si-Si bond between two strained D groups and has not previously been reported. Retention of the strained ringed structure in HFCVD films deposited from D3 is confirmed. The rings are bonded to the matrix through either Si-O or Si-Si bonds, with the latter only becoming prevalent when higher filament temperatures are employed. The strained ring structure is also observed in films deposited from a precursor with a larger unstrained ring structure, D4. These observations suggest that the known gas-phase conversion pathways of D4 to D3 and dimethylsilanone as well as the methyl abstraction reaction from D3 operate in the HFCVD reaction chemistry.  相似文献   

3.
Paramagnetic shifts have been observed for the first time in rare-earth zeolites; the 29Si MAS NMR spectra of rare-earth ion-exchanged low silica X show a large range of isotropic chemical shifts that can be attributed to Fermi contact interactions with the lanthanide electronic moments.  相似文献   

4.
It is demonstrated using a practical example that indirect detection of (29)Si NMR signals is sufficiently sensitive in LC-NMR stop-flow arrangement to analyze mixtures of siloxane polymers. New cryogenic probes with better signal-to-noise ratio will turn this version of LC-NMR into a routine method for analysis of siloxane polymers.  相似文献   

5.
The changes in the chemical shifts of31P,13C, and29Si nuclei in structurally similar phosphaalkenes of the series XiP = C(SiMe3)2 have been investigated. The specific influence of the electrons of each of the four groups of substituents Xi on the delocalized -system –P = C(SiE, SiZ) has been revealed. When the effect of conjugation (or hyperconjugation) from Xi is strengthened, the screening of the SiZ atom increases as the SiE atom loses its screening. In the case of Xi with a predominant inductive effect (halogens, uncojugated groupings) the changes in the screening of SiZ and SiE are symbatic. The correlations of the chemical shifts a with Hammett's -constants and the behavior of the ionization potentials of the -and np energy levels in these compounds are discussed. It is assumed that the asymmetry in the degree of screening of the SiE and SiZ atoms is related to the participation of the unshared electron air of the P atom in the reaction with the –C(SiMe3)2 groupings.Institute of Organic Chemistry, Ukrainian Academy of Sciences, Kiev. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 6, pp. 703–710, November–December, 1991. Original article submitted May 21, 1990.  相似文献   

6.
29Si chemical shifts are reported for nine 1,2-bis(trimethylsiloxy)cycloalkenes and four 1-trimethylsiloxycycloalkenes, (Me3SiO)xCnH2n–2–x (x=1, 2). For cycloalkene derivatives with n?8 the silicon shift exhibits a strong dependence on the ring size, although the silicon is exocyclic and is separated by two bonds from the olefinic carbon atom. The dependence can be exploited for ring size determination of cyclic ketones after trimethylsilylation.  相似文献   

7.
Paramagnetic (hyperfine) NMR shifts in the (13)C cyanide bridge and (31)P resonances in a set of mixed valence complexes [(eta(5)-C(5)R(5))Ru(PPh(3))L((13)CN)Ru(NH(3))(5)](n+) (R = H; L = PPh(3), CO, NO(+); R = Me; L = PPh(3)) are sensitive to the extent of intermetallic charge-transfer, and are strongly solvent dependent.  相似文献   

8.
Zusammenfassung Die Ligandenaustauschreaktionen des Chinoforms wurden mit Hilfe der KMR-Spektroskopie untersucht. In Hexamethylphosphorsäuretriamid und Dioxan sind die Zink- und Eisen(III)-komplexe des Chinoforms stabiler als die entsprechenden Oxinate. Der 7-Iod-Substituent des Chinoforms reagiert vermutlich direkt mit den Metallionen.
Determination of the relative stabilities of the zinc and iron complexes of 5-chloro-7-iodo-8-quinolinol (chinoform) by NMR spectroscopy
Summary Ligand exchange reactions associated with chinoform which is implicated in SMON have been investigated by proton NMR. Zinc and iron(III) complexes of chinoform are proved to be more stable than the corresponding oxinates in hexamethylphosphoric triamide or dioxane. The 7-iodo substituent of chinoform is supposed to interact directly with the metal ions.
  相似文献   

9.
Molecular motions in poly(diethyl siloxane) were studied by solid-state29Si-NMR in the temperature range 180–350 K. In this temperature range two solid phases 1 and 2, a mesophase m, and an amorphous isotropic phase exist. The nature of the chain mobility in the different phases was deduced from the resulting changes in the NMR line-shape governed by anisotropic chemical shift. In the intermediate solid phase 2 its anisotropy is reduced by 25% compared with the low temperature phase 1 due to the onset of oscillations around the chain axis and conformational transitions. In the mesophase m the polymer chain rotates about its long axis yielding an axially symmetric chemical shift tensor opposite in sign to that in the 1, 2 phases. The broad transition of the mesophase into the isotropic phase is accompanied by an increase in a narrow Lorentzian line arising from the amorphous phase. The results are compared with previous1H NMR, Raman-spectroscopy and x-ray measurements.After completion of this work we learnt that PDES has recently also been studied through13C-MAS and29Si-NMR by Möller et al. [13].  相似文献   

10.
Dynamic equilibria related to change of the coordination number of the silicon atom in bis[N-(dimethylamino) imidato-N′,O]silacycloalkanes in solution were studied by theoretical calculations and experimental measurement of the 29Si NMR chemical shifts. Silacyclopentane derivatives were found to exist in solution as mixtures of species with six- and five-coordinate silicon atoms, and silacyclohexane derivatives, as mixtures of five- and four-coordinate silicon compounds.  相似文献   

11.
The effects of intramolecular N→Si coordination and electronic and conformational factors on the chemical shift of 29Si nucleus in silacyclobutane (siletane) derivatives were studied by quantum-chemical methods. Intramolecular coordination induces upfield shift of the 29Si resonance on the average by 50 ppm when the coordination number of the silicon atom increases by unity. The state of conformational equilibrium of siletane derivatives critically affects the accuracy of δSi predictions.  相似文献   

12.
The (29)Si chemical shifts in a series of closely related Ru(II) silyl complexes have been calculated by DFT methods and compared to the experimental values. The factors that lead to possible discrepancies between experimental and calculated values have been identified. It is shown that it is necessary to include the spin-orbit coupling associated with the relativistic effects of the heavy atoms for quantitative agreement with observed chemical shifts but trends are reasonably reproduced when the calculations do not include this correction. An NBO analysis of the NMR contributions from the bonds to Si and the Si core shows the greater importance of the former and a fine tuning originating from the latter.  相似文献   

13.
The solid-state Nuclear Magnetic Resonance (NMR) was used to characterize surfaces of silica gels chemically modified by alkenyltrialkoxysilanes and trialkoxysilyl terminated 1,4-polyisoprenes. The formation of covalent bonds created between alkoxy functional groups from alkenyltrialkoxysilane or trialkoxysilyl-terminated 1,4-polyisoprene and silanol groups on silica was clearly demonstrated by means of 13C and 29Si CP/MAS NMR spectroscopy. Quantitative data, including calculation of the grafting yields in relation with the initial silanol concentrations, were also obtained by using solid-state 29Si-NMR leading to a final well-defined characterization of the silica surfaces. A relatively good agreement was noticed between the grafting yields calculated from 29Si-NMR spectra and those determined from other analytical techniques such as Wijs titration or elementary analysis. The reactivity of the various silica silanols towards each coupling agent was clearly characterized and estimated, as were the proportions of the various grafted structures formed at the silica surface. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 437–453, 1998  相似文献   

14.
H(2)SiCl(2) and substituted pyridines (Rpy) form adducts of the type all-trans-SiH(2*)Cl(2)2 Rpy. Pyridines with substituents in the 4- (CH(3), C(2)H(5), H(2)C=CH, (CH(3))(3)C, (CH(3))(2)N) and 3-positions (Br) give the colourless solids 1 a-f. The reaction with pyrazine results in the first 1:2 adduct (2) of H(2)SiCl(2) with an electron-deficient heteroaromatic compound. Treatment of 1 d and 1 e with CHCl(3) yields the ionic complexes [SiH(2)(Rpy)(4)]Cl(2*)6 CHCl(3) (Rpy=4-methylpyridine (3 d) and 4-ethylpyridine (3 e)). All products are investigated by single-crystal X-ray diffraction and (29)Si CP/MAS NMR spectroscopy. The Si atoms are found to be situated on centres of symmetry (inversion, rotation), and the Si-N distances vary between 193.3 pm for 1 c (4-(dimethylamino)pyridine complex) and 197.3 pm for 2. Interestingly, the pyridine moieties are coplanar and nearly in an eclipsed position with respect to the SiH(2) units, except for the ethyl-substituted derivative 1 e, which shows a more staggered conformation in the solid state. Calculation of the energy profile for the rotation of one pyridine ring indicates two minima that are separated by only 1.2 kJ mol(-1) and a maximum barrier of 12.5 kJ mol(-1). The (29)Si NMR chemical shifts (delta(iso)) range from -145.2 to -152.2 ppm and correlate with the electron density at the Si atoms, in other words with the +I and +M effects of the substituents. Again, compound 1 e is an exception and shows the highest shielding. The bonding situation at the Si atoms and the (29)Si NMR tensor components are analysed by quantum chemical methods at the density functional theory level. The natural bond orbital analysis indicates polar covalent Si-H bonds and very polar Si-Cl bonds, with the highest bond polarisation being observed for the Si-N interaction, which must be considered a donor-acceptor interaction. An analysis of the topological properties of the electron distribution (AIM) suggests a Lewis structure, thereby supporting this bonding situation.  相似文献   

15.
Experimental measurements and theoretical analysis of magnetic properties, structural dynamics and acid-base equilibria for several lanthanide(III) complexes with tetraazacyclododecane derivatives as 19F NMR chemical shift pH probes are presented; pKa values vary between 6.9 and 7.7, with 18 to 40 ppm chemical shift differences between the acidic and basic forms for Ho(III) complexes possessing T1 values of 10 to 30 ms (4.7-9.4 T, 295 K).  相似文献   

16.
17.
 Three silica gel sample systems, modified with 3-amino-propyltriethoxy silane (APTS), were prepared by sequentially sampling the reaction mixture at various time intervals. The concentrations of 3-aminopropylsilyl groups (APS) bound on the silica surface were determined by elemental analysis. For the same sample systems, 29Si NMR intensities of an (–O)4Si species belonging only to the silica gel particles and corrected by a cross-polarization correction factor were also measured. Both the APS-concentrations and the correc-ted 29Si NMR intensities depended upon reaction time, reflecting the rate of the APTS–silica gel reaction. Kinetic analysis of these data was made by use of the Gauss–Newton method, and the overall reaction was found to consist of three reaction processes (an initial fast reaction, a slower second reaction and a much slower third reaction). In particular, the conversion of (–O)3SiOH to (–O)4Si is predominant in the second reaction process and the pore size of a silica gel particle affects the reaction mechanism. Received: 1 November 1996 Accepted: 24 January 1997  相似文献   

18.
The silica gels, derived from water glass solution with pH adjusted at 3.0 and 9.9, were revisited to investigate their constitution, although water glass has been studied for last tens of decades on gelation. Solid-state nuclear magnetic resonance spectroscopy was applied to the nuclei 1H and 29Si, by the use of magic angle spinning (MAS), 1H → 29Si CP-MAS (CP: cross-polarization), and modern techniques such as 2D HETCOR (two dimensional heteronuclear correlation), and variable-contact time CP techniques. Gelation time (tgel) showed U-letter shape dependence on pH. All gels consisted of Qn groups (n: 2, 3, and 4), where Qn stands for a silicate unite [(O1/2)nSi (–O?)4?n] (n: 0–4). The analysis of the 1H → 29Si CP kinetics and 1H-29Si HETCOR spectra elucidated the presence of four kinds of 1H nuclei, i.e., those giving a peak at 6.9 ppm in chemical shift δ: 1H–OSi hydrogen bonded to H2O molecules; one at 4.3 ppm: 1H of adsorbed water molecules, hydrogen-bonded to the silanol groups; one at 1.7 ppm: 1H–OSi confined in the gel lattice, including that forming aggregations like Si–OH/NaO–Si; and one at 4.2 ppm: 1H of water molecules on the outermost hydration layer.  相似文献   

19.
29Si NMR shielding tensors of a series of triphenylsilanes Ph3SiR with R = Ph, Me, F, Cl, Br, OH, OMe, SH, NH2, SiPh3, C≡CPh were determined from 29Si CP/MAS spectra recorded at low spinning rates. In addition the principal components of the shielding tensor were calculated employing the DFT‐IGLO method. For most silanes experimental and calculated values are in good accordance. Larger differences were observed for systems with hydrogen bridge forming substituents and the halides bromide and chloride. In some of the spectra the shielding information interfered with residual dipolar couplings. The different contributions of the various substituents to the principal components of the shielding tensor and the orientation of the tensor within the molecules are discussed and compared for the compounds under investigation.  相似文献   

20.
We have used quantum chemical methods to predict 67Zn NMR chemical shifts as well as quadrupole coupling constants (CQ) in a series of biomimetic and inorganic zinc complexes. The 67Zn chemical shifts are predicted with an R2 = 0.975, corresponding to a 24.3 ppm or 6.7% error over the entire 365 ppm 67Zn chemical shift range. The 67Zn CQ values are predicted with an R2 = 0.991, corresponding to a 1.17 MHz or 3.0% error over the entire 38.75 MHz range. The 67Zn NMR shifts in a series of complexes containing N,O ligands are, in general, highly correlated with the number of oxygen ligands. The ability to compute 67Zn NMR shifts as well as CQ values opens up the possibility of using both of these properties in structure determination or refinement in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号