首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
摩擦偶件材料对非晶含氢碳薄膜摩擦学性能的影响   总被引:1,自引:5,他引:1  
利用等离子体增强化学气相沉积技术在单晶硅基底上制备了非晶含氢碳薄膜;采用Raman光谱仪、红外光谱仪和原子力显微镜等研究了碳膜的微观结构和表面形貌;采用UMT-2MT型摩擦磨损试验机考察了摩擦偶件材料对碳膜摩擦学性能的影响,并探讨了其磨损机制.结果表明:所制备的非晶含氢碳膜均匀、致密,硬度较高;当碳膜同高硬度陶瓷材料配副时,其摩擦系数低而稳定,薄膜呈现轻微擦伤和剥落磨损特征;当碳膜同低硬度的金属材料配副时,其摩擦系数高且不稳定,薄膜呈现严重粘着和磨粒磨损特征.薄膜的摩擦磨损行为同薄膜和摩擦偶件之间的相互转移有关.  相似文献   

2.
含氢非晶碳膜在惰性气氛下展现了超低摩擦性能,摩擦系数可达到10~(–3)数量级.本文中通过试验设计验证了转移膜的形成是碳膜超低摩擦性能获得的必要条件.采用含氢非晶碳膜(a-C:H)与钢作为摩擦配副,球盘接触旋转运动,更换接触方式:一种是钢球与镀a-C:H薄膜的钢平板对摩,另一种是镀a-C:H薄膜钢球与钢平板对摩.保持配副材料不变,利用接触方式的差异,来改变转移膜形成的难易程度.第一种方式下,a-C:H可以转移到对偶形成均匀的转移膜,具有超低摩擦性能;在第二种方式下,a-C:H不能转移到对偶形成转移膜,摩擦系数高.而该转移膜是一种含氢的,以sp~2杂化为主的碳结构.氢能够参与钝化碳悬键,从而保证低化学作用活性,sp~2平面分子结构可以具有较低的剪切强度.因此,转移膜的形成和氢的钝化作用对a-C:H薄膜超低摩擦机理均具有重要的贡献.  相似文献   

3.
掺W类金刚石薄膜的高温摩擦学行为   总被引:2,自引:0,他引:2  
采用阳极层流型离子源结合非平衡磁控溅射技术制备了含氢掺钨类金刚石(W-DLC)薄膜,利用TEM、SEM、XRD、Raman光谱仪和摩擦磨损试验机等方法分析了薄膜的结构、形貌以及在高温下的摩擦学性能,探讨了W-DLC薄膜在高温下摩擦磨损行为作用机理.结果表明:W-DLC薄膜中钨原子以WC1-x纳米晶团簇的形式随机分布于碳基质中,增强了薄膜的韧性.W-DLC薄膜在25~200℃范围内的摩擦系数可稳定在0.1以下,在300℃时的摩擦系数则高达0.5,当试验温度进一步升高到400℃时,薄膜的摩擦系数反而降低至0.3左右,当试验温度升高到500℃时,W-DLC薄膜中的W被氧化生成WO_3和摩擦诱导生成的石墨共同作用,使得薄膜的摩擦系数降到0.15左右,说明W-DLC薄膜在高温下仍然具有优异的减摩特性.然而,W-DLC薄膜的磨损率在25~500℃范围内表现出随着温度的升高而不断增大的趋势.  相似文献   

4.
四面体无定型无氢非晶碳膜的制备及其摩擦学性能研究   总被引:5,自引:4,他引:1  
采用磁过滤阴极真空弧系统分别在硅片[Si(100)]、W18Cr4V高速钢和Cr18Ni9不锈钢基体上沉积了一系列sp3键含量较高的四面体无定型无氢非晶碳膜(ta-C),研究了所合成薄膜的结构、硬度、附着强度和摩擦磨损性能,考察了基体和薄膜厚度对薄膜摩擦系数的影响,简要分析了相应ta-C膜的失效机理.结果表明,在高速钢基体上沉积的ta-C膜的显微硬度为76 GPa,结合力Lc值达42 N,具有优良的摩擦学性能,其摩擦系数为0.12,且摩擦系数可以在16 000 r范围内保持稳定.  相似文献   

5.
采用闭合场非平衡磁控溅射技术分别制备了纯MoS2薄膜以及MoS2-Ti和MoS2-Ti-TiB2复合薄膜,利用真空高温摩擦试验机对比考察三种薄膜在真空环境中25~300℃下的摩擦学性能,通过拉曼光谱(Raman)、X射线衍射(XRD)和透射电镜(TEM)等分析复合元素对薄膜结构的影响以及摩擦前后薄膜结构的变化,探讨摩擦磨损机理.结果表明:纯MoS2薄膜以(002)和(100)晶面取向生长,结构疏松,硬度低,在真空不同温度下摩擦寿命很短;Ti和TiB2复合后,薄膜呈现致密的非晶结构,硬度升高;MoS2-Ti薄膜在低温下(25和100℃)下具有优异的摩擦学性能,当温度达到200℃以上时,摩擦寿命急剧降低;MoS2-Ti-TiB2复合薄膜在25~300℃全温度范围内都保持低的摩擦系数和磨损率,这与其致密的非晶结构、摩擦界面MoS2 (002)晶面有序化以及高硬度耐高温TiB<...  相似文献   

6.
采用电弧离子镀技术在GH-4169高温合金基体上沉积氧化铬薄膜,并对薄膜进行了不同温度的退火处理,系统研究了不同退火温度(500、600、700和800 ℃)对薄膜形貌、薄膜结构、薄膜力学性能及薄膜摩擦学性能的影响. 结果表明:随退火温度升高,薄膜表面缺陷减少,氧化铬晶化趋于完善,薄膜硬度下降. 高温摩擦学性能方面薄膜经500和600 ℃退火后,在环境温度从室温到800 ℃宽温域范围内摩擦系数较退火前均有所增加;经800 ℃退火后的薄膜在环境温度为400~600 ℃时的摩擦系数均明显下降,但室温摩擦系数明显升高,宽温域内摩擦系数波动较大;700 ℃退火后薄膜宽温域内摩擦系数在0.21~0.33之间,波动较小.   相似文献   

7.
非晶含氢碳薄膜摩擦与抗擦伤性能的实验研究   总被引:4,自引:2,他引:2  
用射频等离子体增强化学气相沉积法在钛合金表面制备了非晶含氢碳(a-C:H)薄膜,利用原小孩子显微镜、纳米力学探针、划痕仪以及滑动摩擦和微动摩擦试验仪器等研究了其表面形貌、粗糙度、硬度和摩擦性能,分析了薄膜的表面粗糙度、硬度及载荷对摩擦系数的影响。结果表明:随着薄膜厚度的增加,硬度略有提高,划痕临界载荷明显提高,而表面粗糙度先增加后降低,最后趋于稳定;室温空气中的滑动摩擦系数随硬度的增大以及表面粗糙度和载荷的减小而降低;在微动摩擦试验中,随相对湿度增加,摩擦系数降低,这有利于其在体液环境中的应用;薄膜具有良好的耐磨性能,经5000次摩擦后磨损很小。  相似文献   

8.
元素掺杂是提高类金刚石(DLC)薄膜高温耐摩擦性能的重要途径.本文中采用高功率脉冲磁控溅射(HiPIMS)和中频磁控溅射(MFMS)复合技术在304不锈钢表面沉积具有不同Si含量的掺硅类金刚石(Si-DLC)薄膜,利用原子力显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、纳米压痕和UMT-TriboLab摩擦试验机等系统分析了Si含量对Si-DLC薄膜的结构、力学性能及不同温度下的摩擦学性能的影响,重点探讨了Si-DLC薄膜在高温下摩擦磨损机制.结果表明:Si-DLC薄膜中Si以四面体碳化硅的形式随机分布于无定型DLC基体中,增强薄膜的韧性.同时,Si掺杂使DLC薄膜向金刚石结构发生转变并显著提高了薄膜的硬度.摩擦结果表明,当Si原子分数为15.38%时,Si-DLC薄膜在常温下的摩擦系数和磨损率最低,同时该薄膜在300℃下能维持在较低的摩擦系数(约0.1),主要是由于Si-DLC薄膜中的四面体碳化硅结构能够提升sp3键的稳定性.此外,Si-DLC薄膜中的Si在高温摩擦时会在对偶球表面形成1层SiO2保护层,减...  相似文献   

9.
电化学沉积DLC薄膜的摩擦学性能研究   总被引:2,自引:3,他引:2  
采用直流电源,以有机溶剂作为碳源,通过电化学沉积方法在单晶硅表面制备了类金刚石碳薄膜.用原子力显微镜、拉曼光谱仪和傅立叶红外光谱仪等表征了薄膜的结构,用DF-PM型动-静摩擦系数精密测定仪考察了薄膜的摩擦学性能.结果表明:电化学沉积含氢类金刚石碳薄膜的硬度较高(约14GPa),薄膜均匀、致密,表面粗糙度小;在室温干摩擦条件下,薄膜同GCrl5钢以及α-Al2O和Si3N4陶瓷对摩时的摩擦系数随载荷增加而略微减小;陶瓷材料/类金刚石碳膜的摩擦系数较低,钢/类金刚石碳膜的摩擦系数较高;类金刚石碳薄膜同Si3N4陶瓷对摩时呈现断裂剥落特征;同GCrl5钢对摩时发生转移并形成转移膜,耐磨寿命缩短.  相似文献   

10.
采用闭合场非平衡磁控溅射技术制备了MoS2-C异质复合薄膜,利用多环境可控摩擦试验机测试了薄膜在真空环境中的摩擦学性能,通过拉曼光谱仪(Raman)、X射线衍射仪(XRD)和透射电子显微镜(TEM)等表征手段分析了薄膜摩擦前后结构的变化,探讨了超润滑机理.结果表明:复合薄膜呈现致密的“纳米晶/非晶”结构,在真空中具有优异的摩擦学性能,保持了超低摩擦系数(0.006~0.009)和磨损率[1.026×10-7 mm3/(N·m)],达到了超润滑状态.摩擦过程中碳选择性转移到钢球表面形成非晶碳转移层,薄膜磨痕表面形成有序的MoS2 (002)晶面,摩擦发生在MoS2有序晶体和非晶碳转移膜之间,形成非公度异质接触,降低摩擦系数实现超润滑.钢球/MoS2-Ti、a-C:H/MoS2-Ti摩擦配副在相同条件下的不同摩擦行为,也证明了上述超润滑机理.  相似文献   

11.
本文采用中频磁控溅射金属Al靶,以CH4为反应气体,通过调整Al靶溅射功率,在p(100)单晶硅片和不锈钢基底上成功制备出不同Al含量的Al/a-C:H纳米复合薄膜。并利用HR-TEM、XPS、纳米压痕仪和摩擦磨损试验机等手段分析和研究了Al/a-C:H薄膜的结构、机械及摩擦学性能。结果表明:金属Al以纳米晶颗粒形式镶嵌在非晶碳网络中,使得所制备Al/a-C:H薄膜呈现出典型的纳米晶/非晶复合结构;同时,Al掺杂促进薄膜中sp2杂化碳形成,且有效地释放残余内应力。Al靶溅射功率为800 W时所制备的Al/a-C:H薄膜具有结构致密、内应力低、硬度高的特性;在大气环境中,该薄膜与Si3N4陶瓷球干摩擦时显示出优越的摩擦学性能,其摩擦系数约为0.055,磨损率约为2.9×10-16 m3/(N?m)。  相似文献   

12.
对比考察了聚苯酯(Ekonol)和PAB纤维增强PTFE复合材料在干摩擦和液氮介质中的摩擦磨损性能,利用扫描电子显微镜观察分析在干摩擦和液氮条件下Ekonol/PAB纤维增强PTFE复合材料的磨损表面形貌及其磨损机理,同时还考察了温度对复合材料冲击韧性的影响.结果表明:在液氮条件下,PTFE的抗犁削能力增强,Ekonol/PAB/PTFE复合材料的磨损量明显比干摩擦下低,复合材料的摩擦系数比干摩擦下大,载荷对复合材料的磨损量影响较小,复合材料的摩擦系数和磨损量随着滑动速度增加基本保持不变,材料的磨损机理主要为轻微犁削和脆性断裂;而在干摩擦条件下,载荷对复合材料的磨损量影响显著,随着滑动速度增加,复合材料的摩擦系数先增后减,磨损量逐渐增大,材料的磨损机理主要以犁削、粘着磨损及疲劳磨损为主.在2种试验条件下复合材料的摩擦系数均随载荷增加而减小;低温时材料的冲击韧性约为常温时的1/2.  相似文献   

13.
Zr基大块非晶合金的摩擦磨损性能   总被引:8,自引:1,他引:8  
研究了以等电子浓度和等原子尺寸为依据设计的6种不同成分的非晶合金以及同非晶合金成分相同的4种晶态合金在干摩擦条件下同GCr15钢对摩时的摩擦磨损行为。结果表明:6种不同成分非晶合金的摩擦系数相近,均在0.5-0.6范围以内;4种晶态合金的摩擦系数均在0.4-0.5范围内,相同成分的晶态合金的摩擦系数比非晶合金的低,且显微硬度和耐磨性较高;非晶合金的磨损机制主要为塑性流变,晶态合金的磨损机制主要为脆性断裂以及磨粒磨损。  相似文献   

14.
本文中使用电沉积方法在铜基表面分别制备了纯银镀层和纯银/银石墨复合镀层,研究了不同温度下两种镀层的磨损性能和行为.研究表明:室温至120℃,纯银镀层磨损机理为轻微的黏着磨损,摩擦系数稳定在0.35~0.45左右,磨损率为3×10~(-14) m~3/(N·m)左右;240~480℃,镀层磨损机理为明显的黏着磨损,磨损率急剧增加,摩擦系数不稳定.纯银/银石墨复合镀层在室温至240℃的磨损机理为轻微的黏着磨损,平均摩擦系数在0.1左右,磨损率增加缓慢;当温度超过240℃时,由于抗高温石墨膜的破裂,出现了严重的塑性变形;480℃时,复合镀层磨损机理主要表现为明显的磨粒磨损,摩擦系数不稳定,磨损率达到46×10~(-14) m~3/(N·m),耐磨性优于纯银镀层.  相似文献   

15.
采用粉末冶金方法制备出了Cu-12.5Ni-5Sn-石墨自润滑复合材料,通过改变石墨的含量来研究该复合材料的力学性能和在不同摩擦试验温度下的摩擦磨损性能,采用SEM和Raman分析磨损表面,进而讨论复合材料的摩擦、磨损和润滑机制. 结果表明:复合材料的硬度和屈服强度随着石墨含量的增加而逐渐降低;温度对不同石墨含量的复合材料的摩擦磨损性能有显著的影响,在室温下,石墨质量分数为1%和3%的石墨复合材料的摩擦系数和磨损率明显小于5%石墨复合材料;在300 ℃下,石墨质量分数为3%时,复合材料的摩擦磨损性能最好;在500 ℃下,石墨质量分数为5%的石墨复合材料的摩擦磨损性能最好. 在室温下,复合材料具有较好自润滑性的主要原因是形成了几乎光滑连续的石墨润滑膜. 在300和500 ℃下,由金属氧化物和石墨组成的混合物润滑膜是复合材料保持自润滑性的主要原因.   相似文献   

16.
采用高能球磨结合喷雾造粒技术制备微米级球形Ni3Al基复合粉末,利用等离子喷涂方法制备涂层后考察其在不同载荷(5、10和20 N)下宽温域内(25~800 ℃)的摩擦学性能. 用SEM、EDS和Raman分析磨痕、对偶销和磨屑的微观组织和物相组成,对比分析载荷对摩擦磨损机理的影响. 结果表明:25~200 ℃时,载荷增加促进了润滑相的“析出效应”,但载荷增至20 N时涂层发生塑性变形产生“封闭效应”,使涂层摩擦系数和磨损率随载荷增加呈先减后增的趋势;400~600 ℃时,载荷增加导致的摩擦热加速了氧化进程,降低磨损表面剪切强度,从而使摩擦系数和磨损率持续降低;800 ℃时,磨损表面形成富含NiCr2O4、Ag2MoO4和NiO的连续、光滑釉质层,但在20 N时局部过高的接触应力使润滑膜破裂而发生剥落,导致摩擦学性能下降.   相似文献   

17.
MoSi2-Mo5Si3-Mo5SiB2复合材料是一种很有发展前景的高温耐磨材料,但MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的干滑动摩擦磨损性能尚不清楚. 本文中通过销-盘式干滑动摩擦磨损试验,考察了MoSi2-Mo5Si3-Mo5SiB2/SiC配对副在不同温度(25~1 000 ℃)和载荷下(2.5~10 N)的摩擦学特性. 结果表明:试验温度和载荷对MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的摩擦系数影响较大,而对其磨损率影响较小. 载荷为5 N时,在25~1 000 ℃区间,摩擦系数和磨损率分别在0.11~0.43和0.513×10-7~0.544×10-7 mm3/(N·m)范围;在25~400 ℃时,磨损机制以轻微的氧化和黏着磨损为主,在600~1 000 ℃磨损机制主要表现为严重的氧化和黏着磨损. 在1 000 ℃时,随着载荷(2.5~10 N)的增加,摩擦系数和磨损率分别为0.29~0.38和0.540×10-7~0.547×10-7 mm3/(N·m);载荷为2.5~10 N时,始终存在黏着和氧化磨损;载荷为7.5~10 N时,材料磨损表面还伴随碾压塑性变形的特征.   相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号