首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
T.R. Marchant 《Wave Motion》1996,23(4):307-320
Marangoni-Bénard convection is the process by which oscillatory waves are generated on an interface due to a change in surface tension. This process, which can be mass or temperature driven is described by a perturbed Korteweg-de Vries (KdV) equation. The evolution and interaction of solitary waves generated by Marangoni-Bénard convection is examined. The solitary wave with steady-state amplitude, which occurs when the excitation and friction terms of the perturbed KdV equation are in balance is found to second-order in the perturbation parameter. This solitary wave has a fixed amplitude, which depends on the coefficients of the perturbation terms in the governing equation. The evolution of a solitary wave of arbitrary amplitude to the steady-state amplitude is also found, to first-order in the perturbation parameter. In addition, by using a perturbation method based on inverse scattering, it is shown that the interaction of two solitary waves is not elastic with the change in wave amplitude determined. Numerical solutions of the perturbed KdV equation are presented and compared to the asymptotic solutions.  相似文献   

2.
The steady-state solitary wave solution of high-level Green–Naghdi (GN) equations is obtained by use of the Newton–Raphson method. Four aspects of solitary waves are studied: the wave speed, wave profile, velocity field and particle trajectory. A convergence study is performed for each individual case. Results of the converged model are compared with the existing laboratory experiments and other theoretical solutions for an inviscid and incompressible fluid, including the solutions of the Euler equations. Particle trajectories, predicted by the GN model, show close agreement with the laboratory measurements and provide a new approach to understanding the movement of the particles under a solitary wave. It is further shown that high-level GN equations can predict the solitary wave of the highest height.  相似文献   

3.
All the possible traveling wave solutions of Whitham-Broer-Kaup (WBK) equation are investigated in the present paper. By employing phase plane analysis, transition boundaries are derived to divide the parameter space into several regions associated with different types of phase portraits corresponding to different forms of wave solutions. All the exact expressions of bounded wave solutions are obtained as well as their existence conditions. The mechanism of bifurcation between different waves with varying Hamiltonian value has been revealed. It is pointed out that as the periods of two coexisted periodic waves tend to infinity, they may evolve to two solitary waves. Furthermore, when their trajectories pass through the common saddle point, the two solitary waves may merge into a periodic wave, and its amplitude is nearly equal to the sum of the amplitudes of the two solitary wave solutions.  相似文献   

4.
Propagation of nonlinear strain waves through a layered composite material is considered. The governing macroscopic wave equation for the long-wave case was obtained earlier by the higher-order asymptotic homogenization method (Andrianov et al., 2013). Non-stationary dynamic processes are investigated by a pseudo-spectral numerical procedure. The time integration is performed by the Runge–Kutta method; the approximation with respect to the spatial co-ordinate is provided by the Fourier series expansion. The convergence of the Fourier series is substantially improved and the Gibbs–Wilbraham phenomenon is reduced with the help of Padé approximants. As result, we explore how fast and under what conditions the solitary strain waves can be generated from an initial excitation. The numerical and analytical solutions (when the latter can be obtained) are in good agreement.  相似文献   

5.
6.
This paper deals with the numerical verification of the theory developed by Derzho and Grimshaw (DG) (1997, Phys. Fluids 9(11), 3378–3385) regarding solitary waves in stratified fluids with recirculation regions. The Boussinesq approximation is made and the stratification is chosen such that the Brunt-Väisälä frequency differs only slightly from uniform stratification. To establish the consistency of the numerical scheme the usual KdV and mKdV solutions are tested first and then the solutions obtained by DG are considered. It is found that these waves remain of permanent form and are stationary when viewed at their corresponding phase speed. The recirculation region remains stagnant to first order as predicted by DG.  相似文献   

7.
The focus of present study is on how to generate solitary waves as pure as possible by using a piston type wave maker. A meshless numerical model, which can simulate the trajectories of fluid particles in a wave motion exerted by the wave paddle, is established for the purpose of present study. The present numerical model is verified by the comparison with experimental data before it is employed to the focused problem. Various wave paddle motions are considered. The results show that solitary waves generated by applying Fenton’s solitary solution to the paddle motion proposed by Goring are purer than those generated by other paddle motions.  相似文献   

8.
A systematic procedure is proposed for obtaining solutions for solitary waves in stratified fluids. The stratification of the fluid is assumed to be exponential or linear. Its comparison with existing results for an exponentially stratified fluid shows agreement, and it is found that for the odd series of solutions the direction of displacement of the streamlines from their asymptotic levels is reversed when the stratification is changed from exponential to linear. Finally the interaction of solitary waves is considered, and the Korteweg-de Vries equation and the Boussinesq equation are derived. Thus the known solutions of these equations can be relied upon to provide the answers to the interaction problem.  相似文献   

9.
Periodic and solitary gravity-capillary waves propagating at a constant velocity at the surface of a fluid of finite depth are considered. The vorticity in the fluid is assumed to be constant. Analytical solutions are presented for waves of small amplitude. For waves of large amplitude, numerical solutions are computed by boundary integral equation methods. The results unify previous findings for irrotational gravity capillary waves and gravity waves with constant vorticity. In particular solitary waves with oscillatory tails and branches of solutions which exist only for waves of large amplitude are found.  相似文献   

10.
We consider the damping of large-amplitude solitary waves in the framework of the extended Korteweg-de Vries equation (that is, the usual Korteweg-de Vries equation supplemented with a cubic nonlinear term) modified by the inclusion of a small damping term. The damping of a solitary wave is studied for several different forms of friction, using both the analytical adiabatic asymptotic theory and numerical simulations. When the coefficient of the cubic nonlinear term has the opposite sign to the coefficient of the linear dispersive term, the extended Kortweg-de Vries equation can support large-amplitude “thick” solitary waves. Under the influence of friction, these “thick” solitary waves decay and may produce one or more secondary solitary waves in this process. On the other hand, when the coefficient of the cubic nonlinear term has the same sign as the coefficient of the linear dispersive term, but the opposite sign to the coefficient of the quadratic nonlinear term, the action of friction may cause a solitary wave to decay into a wave packet.  相似文献   

11.
Propagation of interfacial waves near the critical depth level in a two-layer fluid system is investigated. We first present a generalized modified Kadomtsev-Petviashvili (gmKP) equation for weakly nonlinear and dispersive interfacial waves propagating predominantly in the longitudinal direction of a slowly rotating channel with gradually varying topography and sidewalls. For certain type of non-rotating channels, we find two families of periodic-wave solutions, which include solitarywave solutions and a shock-like solution as limiting cases, to the variable-coefficient gmKP equation. We also show that in this situation the gmKP equation has only unidirectional N-soliton solutions and does not allow soliton resonance to occur. In a rotating uniform channel, our small-time asymptotic analysis and numerical study of the gmKP equation show that, depending on the relative importance of the cubic nonlinearity to quadratic nonlinearity, the wavefront of a Kelvin solitary wave may curve either forward or backward, trailed by a small train of Poincaré waves. When these two nonlinearities almost balance each other, the wavefront becomes almost straight-crested across the channel, and the trailing Poincaré waves diminish.  相似文献   

12.
Zhao  Xin  Tian  Bo  Tian  He-Yuan  Yang  Dan-Yu 《Nonlinear dynamics》2021,103(2):1785-1794

In this paper, outcomes of the study on the Bäcklund transformation, Lax pair, and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics, fluid mechanics, and plasma physics are presented. Via the Hirota bilinear method, a bilinear Bäcklund transformation is obtained, based on which a Lax pair is constructed. Via the symbolic computation, mixed rogue–solitary and rogue–periodic wave solutions are derived. Interactions between the rogue waves and solitary waves, and interactions between the rogue waves and periodic waves, are studied. It is found that (1) the one rogue wave appears between the two solitary waves and then merges with the two solitary waves; (2) the interaction between the one rogue wave and one periodic wave is periodic; and (3) the periodic lump waves with the amplitudes invariant are depicted. Furthermore, effects of the noise perturbations on the obtained solutions will be investigated.

  相似文献   

13.
史杰  王砚 《应用力学学报》2020,(2):566-572,I0007
基于一维颗粒链中产生的高度非线性孤立波,研究孤立波与半无限复合材料体的耦合作用。根据赫兹定律推导了一维颗粒链中颗粒间相互作用的运动微分方程,建立了颗粒链与半无限复合材料体的接触模型。对于颗粒与复合材料的接触,采用已有文献中修正后的赫兹定律,研究了高度非线性孤立波与半无限复合材料体的耦合力学作用机理,推导了颗粒链与半无限复合材料体的相互耦合运动微分方程组,通过数值计算,得到了各颗粒的内力、速度、位移曲线。分析了材料属性对回弹孤立波出现的时间、幅值的影响。结果表明:随着纤维方向弹性模量的增大,次级回弹波出现的时间和波幅都逐渐增大,随着垂直纤维方向弹性模量的增大,次级回弹波出现的时间先减小后增大,次级回弹波的幅值逐渐减小直至消失。  相似文献   

14.
In this paper, we consider the higher order Boussinesq (HBq) equation which models the bi-directional propagation of longitudinal waves in various continuous media. The equation contains the higher order effects of frequency dispersion. The present study is devoted to the numerical investigation of the HBq equation. For this aim a numerical scheme combining the Fourier pseudo-spectral method in space and a Runge–Kutta method in time is constructed. The convergence of semi-discrete scheme is proved in an appropriate Sobolev space. To investigate the higher order dispersive effects and nonlinear effects on the solutions of HBq equation, propagation of single solitary wave, head-on collision of solitary waves and blow-up solutions are considered.  相似文献   

15.
IntroductionThePLKmethodisaneffectiveperturbationmethodandhasahistoryofmorethan 10 0yearsinitsadventanddevelopment (cf.Refs.[1- 6 ]) .Inthe 80softhenineteenthcentury ,Poincare ,Lindstedtetal.proposedatechniqueofstrainedparametersintheirstudyofcelestialmechanics.Th…  相似文献   

16.
This paper studies nonlinear waves in a prestretched cylinder composed of a Blatz-Ko material. Starting from the three-dimensional field equations, two coupled PDEs for modeling weakly nonlinear long waves are derived by using the method of coupled series and asymptotic expansions. Comparing with some other existing models in literature, an important feature of these equations is that they are consistent with traction-free surface conditions asymptotically. Also, the material nonlinearity is kept to the third order. As these two PDEs are quite complicated, the attention is focused on traveling waves, for which a first-order system of ODEs are obtained. We use the technique of dynamical systems to carry out the analysis. It turns out that the system is three parameters (the prestretch, the propagating speed and an integration constant) dependent and there are totally seven types of phase planes which contain trajectories representing bounded traveling waves. The parametric conditions for each phase plane are established. A variety of solitary and periodic waves are found. An important finding is that kink waves can propagate in a Blatz-Ko cylinder. We also find that one type of periodic waves has an interesting feature in the profile slope. Analytical expressions for all bounded traveling waves are obtained.  相似文献   

17.
In this paper, we investigate the modified Kadomtsev–Petviashvili (mKP) equation for the nonlinear waves in fluid dynamics and plasma physics. By virtue of the rational transformation and auxiliary function, new bilinear form for the mKP equation is constructed, which is different from those in previous literatures. Based on the bilinear form, one- and two-soliton solutions are obtained with the Hirota method and symbolic computation. Propagation and interactions of shock and solitary waves are investigated analytically and graphically. Parametric conditions for the existence of the shock, elevation solitary, and depression solitary waves are given. From the two-soliton solutions, we find that the (i) parallel elastic interactions can exist between the (a) shock and solitary waves, and (b) two elevation/depression solitary waves; (ii) oblique elastic interactions can exist between the (a) shock and solitary waves, and (b) two solitary waves; (iii) oblique inelastic interactions can exist between the (a) two shock waves, (b) two elevation/depression solitary waves, and (c) shock and solitary waves.  相似文献   

18.
The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented.The Saffman lift force acting on a particle in a shear flow istaken into account.It is shown that particle migration across the boundary layer leads tointersections of particle trajectories.The corresponding modification of dusty gas model isproposed in this paper.The equations of two-phase sidewall boundary layer behind a shock wave moving at aconstant speed are obtained by using the method of matched asymptotic expansions.Themethod of the calculation of particle phase parameters in Lagrangian coordinates isdescribed in detail.Some numerical results for the case of small particle concentration aregiven.  相似文献   

19.
The results of a numerical investigation of the laws of shock wave propagation in polydisperse (two-fraction) gas suspensions with a non-uniform initial particle concentration distribution are presented. Examples of shock wave propagation in extended layers of a gas suspension with linearly increasing, linearly decreasing and sinusoidal laws of variation of the particle concentration are considered. It is shown that when shock waves pass through layers of a gas suspension with increasing and decreasing laws of variation of the particle concentration, respectively, amplification and attenuation of the waves are observed; when shock waves travel through gas suspensions with a periodic law of variation of the particle concentration the pressure distribution behind the wave fronts is nonmonotonic. The solutions corresponding to polydisperse and monodisperse gas suspensions with an effective particle size are examined. The nonequilibrium and thermodynamic-equilibrium solutions are compared.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 183–190, September–October, 1991.  相似文献   

20.
In this paper, we study strongly nonlinear axisymmetric waves in a circular cylindrical rod composed of a compressible Mooney-Rivlin material. To consider the travelling wave solutions for the governing partial differential system, we first reduce it to a nonlinear ordinary differential equation. By using the bifurcation theory of planar dynamical systems, we show that the reduced system has seven periodic annuluses with different boundaries which depend on four parameters. We further consider the bifurcation behavior of the phase portraits for the reduced one-parameter vector fields when other three parameters are fixed. Corresponding to seven different periodic annuluses, we obtain seven types of travelling wave solutions, including solitary waves of radial contraction, solitary waves of radial expansion, solitary shock waves of radial contraction, solitary shock waves of radial expansion, periodic waves and two types of periodic shock waves. These are physically acceptable solutions by the governing partial differential system. The rigorous parameter conditions for the existence of these waves are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号