首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of bulk and precipitation polymerization of vinyl chloride has been studied over wide range of reaction temperature by using γ-ray induced initiation. The autoacceleration effect, which has been observed by many investigators in the case of chemically initiated bulk polymerization of vinyl chloride above 40°C and has been the most controversial aspect of the bulk polymerization of vinyl chloride, was found to disappear in the bulk polymerization below 0°C. In the bulk polymerization at 40°C, the autoacceleration effect was observed up to 20%, in agreement with the results of previous investigators, and a pronounced effect of the size of polymer particles on the time–conversion curve was observed. The kinetics of precipitation polymerization of vinyl chloride in the presence of some nonsolvents was successfully described by a oneparameter equation. A kinetic scheme, which clearly explains the zero-order reaction behavior of bulk polymerization at low temperature and the kinetic behavior of precipitation polymerization described by the empirical equation, is proposed. The autoacceleration effect in the bulk polymerization at 40°C was considered to be essentially the same phenomenon as the small retardation period observed in the bulk polymerization at low temperature.  相似文献   

2.
This study aimed at polymerization of methyl methacrylate with novel catalysts in the atom transfer radical polymerization (ATRP) condition at 90 °C. This was accomplished using CuBr/N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (CuBr–AEAPTMS) as a homogeneous catalyst and one time with CuBr@AEAPTMS/SBA-15 as a heterogeneous catalyst. Catalysts were characterized using TGA, FT-IR, and UV–Vis spectroscopy. The structural analysis of the polymer was carried out by 13C NMR spectroscopy and GPC. Three characteristic parts of polymer produced by ATRP method including the initiator, monomer units, and end group was shown in 13C NMR spectra. In addition, the presence of C–Br unit showed that the polymerization process is alive. The 1H NMR analysis was used for kinetic investigation of methyl methacrylate polymerization with homogeneous and heterogeneous catalysts that showed high monomer conversion (98 and 90% after 35 min, respectively) and good control of molecular weight with a dispersity (Р= 1.5–1.7). In addition, the plot of ln ([monomer]0/[monomer] t ) versus time gave linear relationships indicating a constant concentration of the propagating species throughout the polymerization. Finally, the results of the polymerization using heterogeneous catalyst compared with homogeneous catalyst revealed that it was according to ATRP method.  相似文献   

3.
Vinyl chloride was polymerized at 53–97% of the saturation pressure in a water-suspended system at 55°C with an emulsion PVC latex as seed. A water-soluble initiator was used in various concentrations. The monomer was continuously charged as vapor from a storage vessel kept at lower temperature. Characterization included determination of molecular weight distribution and degree of long-chain branching by gel chromatography and viscometry and by thermal dehydrochlorination. To avoid diffusion control intense agitation was necessary. At a certain conversion, aggregation of primary particles resulted in restricted polymerization rate. Before aggregation, formation of new particles did not occur as the number of particles was high enough to ensure capture of all oligoradicals. The kinetic equation accepted for ordinary emulsion polymerization of vinyl chloride was qualitatively found to be valid after the pressure drop as well. Decreased termination rate may result in increased polymerization rate at reduced monomer concentration, i.e., a gel effect, especially at low particle numbers and high polymer contents. The molecular weight decreased with decreasing monomer concentration. This is in accordance with the new mechanism suggested for chain transfer to monomer starting with occasional head-to-head additions.  相似文献   

4.
The radical grafting of methyl methacrylate (MMA) onto polybutadiene (PBD) in benzene solution at 60°C is more efficiently induced by benzoyl peroxide (BP) than by azoisobutyronitrile (AIBN). PBD exerts a pronounced retardation on the polymerization of MMA and the grafting efficiency is governed by the ratio of rubber to monomer in the system. With BP as initiator, a fairly simple kinetic expression, relating grafting efficiency with reactant concentrations, can be derived by making certain approximations, including the neglect of termination grafting. The experimental data are reasonably consistent with this equation and yield acceptable values of several kinetic parameters. With AIBN, termination grafting is more significant. In consequence the relevant kinetic equation can be only qualitatively validated.  相似文献   

5.
The effect of polymerization conditions such as aging time of the catalyst, polymerization temperature, polymerization time, monomer concentration, and catalyst concentration on the polymerization of isobutyl vinyl ether was intensively studied by using the VCI3·LiCl–Al(i-Bu)3 system at an Al(i-Bu)/VCl3·LiCl ratio of 6 at which the cationic polymerization by VCl3·LiCl is sufficiently depressed. About 10 min aging of the catalyst in the presence of monomer yields a fairly stable catalytie system. The optimum polymerization temperature is around 30°C. The conversion increased with increasing monomer concentration, whereas the stereospecificity of polymerization decreased. Unexpectedly, the conversion decreased as total catalyst concentration increased. This phenomenon is explained by considering the deactivation of catalytic sites by the excess of Al(i-Bu)3. A reasonable mechanism from kinetic considerations is that two molecules of Al(i-Bu)3 deactivate the catalytic site in an equilibrium reaction. This deactivation is understandable by considering that the coordination of two molecules of Al(i-Bu)3 will occupy all the coordination positions of vanadium, so that there is no room for coordination of monomer coming to the catalytic site.  相似文献   

6.
Experimental data are presented for the γ-initiated polymerization of commercial styrene at a series of temperatures above ambient. Examination of the early stages of polymerization (up to 10% conversion) has led to the following conclusions. For this system, there exists a critical temperature (109°C) above which the rate of polymerization is independent of dose rate, over a wide range of γ-intensities. This dose rate independence is ascribed to a “limiting rate of initiation,” characteristic of the intensity range. A consequence of this is that at a given temperature above the critical temperature the degree of polymerization is also dose rate-independent. The above phenomena can be expected in any vinyl monomer where the monomer is fairly active and produces relatively stable radicals. Experimental procedure is described, and kinetic analysis presented to substantiate the conclusions.  相似文献   

7.
Lipase‐catalyzed ring‐opening bulk polymerizations of 3(S)‐sec‐butylmorpholine‐2,5‐dione (BMD) were investigated. Selected commercial lipases were screened as catalysts for BMD polymerization at 110°C. Polymerizations catalyzed with 10 wt.‐% of lipase PPL and PC result in BMD conversions of about 70% and in molecular weights of the products ranging from 5 500 to 10 700. Lipases MJ, CR and ES showed lower catalytic activities for the polymerization of BMD. Poly(3‐sec‐butylmorpholine‐2,5‐dione) has a carboxylic acid group at one end and a hydroxy group at the other end. During the polymerization racemization of the isoleucine residue takes place. Lipase PPL was selected for a more detailed study. The apparent rate of polymerization increases with increasing PPL concentration when the polymerization temperature is 110°C. When the PPL concentration is 5 and 10 wt.‐% with respect to the monomer, a conversion of about 70% is reached after 5 d and 3 d, respectively, while for a PPL concentration of 1 wt.‐% the conversion is less than 7% even after 6  d. High concentrations of PPL (10 wt.‐%) result in high Mn values (< 4  d). The highest molecular weight poly(BMD), Mn = 19 900, resulted from a polymerization conducted at 120°C with 5 wt.‐% PPL for 6 d. The general trend observed by varying the polymerization temperature is as follows: (i) monomer conversion and Mn increase with increasing reaction temperature from 110 to 125°C, (ii) monomer conversion and Mn decrease with an increase in reaction temperature from 125 to 130°C. Water content was found to be an important factor that controls both the conversion and the molecular weight. With increasing water content, enhanced polymerization rates are achieved while the molecular weight of poly(BMD) decreases.  相似文献   

8.
Free radical polymerization of n-dodecyl methacrylate (DDMA) in bulk has been investigated by differential scanning calorimetry (DSC). Autoacceleration of reaction was observed at the temperatures 70, 80, and 90 °C, with 0.25, 0.5, and 1 wt% of initiator, and was absent at 100 °C. DSC curves obtained at the temperatures below 100 °C were characterized by two maxima. Two-peak deconvolution was used to separate DSC curve into two constitutive unimodal curves, i.e., to calculate the contribution of polydodecyl methacrylate formed before (first maximum) and after (second maximum) the onset of autoacceleration. The share of second maximum decreases as the polymerization temperature and initiator concentration are increased. As the organization of monomer is known to decrease with increasing temperature, it can be expected that the fraction of polymerized disordered phase of monomer (first maximum in DSC curve) is the highest at 90 °C. Our results confirm this prediction and are in good agreement with those observed from conversion versus time curves of DDMA polymerization.  相似文献   

9.
The polymerization of vinyl chloride initiated by alkyllithium compounds was investigated. The effect of temperature, initiator concentration, and monomer concentration on the conversion and the properties of the resulting polymers were studied. The optimum temperature in the investigated range (between ?20°C and +20°C) was +5°C. The conversion is directly proportional to the concentration of both the initiator and the monomer. The molecular weight is inversely proportional to the initiator concentration and directly proportional to the monomer concentration. Under optimum conditions the molecular weight of the polymers is as high as 140,000. These results differ by an order from hitherto published data on the nonradical polymerization of vinyl chloride. The proportion of isotactic and syndiotactic structures resulting from the presence of tert-butyllithium does not differ from that obtained by radical polymerization, but the occurrence of anomalous structures is reduced to a minimum. The stability of the macromolecules is higher. A mechanism of the polymerization is suggested.  相似文献   

10.
The emulsion polymerization of methyl methacrylate (MMA) and styrene (St) were investigated with using polyamidoamine (PAMAM) dendrimer as seed, potassium persulfate as initiator and sodium dodecyl sulfate as emulsifier. The effects of 4.0GPAMAM dendrimer concentration, initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature on the monomer conversion and polymerization rate were investigated. At the same time, the influence of the generation of PAMAM dendrimer on latex particle size was studied also. The results showed that the monomer conversion and polymerization rate increased with increasing initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature. But polymerization rate increased firstly with an increase in the 4.0GPAMAM dendrimer from 0.03 g to 0.09 g and then decreased with further increase to 0.12 g. When the concentration of 4.0GPAMAM dendrimer less than 1.449 × 10?4 mol/L, the kinetic equation can be expressed by Rp∝[4.0GPAMAM]0.772[SDS]0.562[KPS]0.589[M]0.697, and the activation energy (Ea) of emulsion polymerization is 62.56kJ/mol. In additional, the copolymer latex particle size decreased and possessed monodispersity with increasing the generation of PAMAM dendrimer. According to FT-IR spectrum analysis, PAMAM dendrimer is successfully incorporated into the poly(PAMAM-St–MMA) latex particles.  相似文献   

11.
A kinetic study of radical polymerization of vinyl mercaptobenzothiazole (VMBT) with α,α′-azobisisobutyonitrile (AIBN) at 60°C was carried out. The rate of polymerization (Rp) was found to be expressed by the rate equation: Rp = k[AIBN]0.5 [VMBT]1.0, indicating that the polymerization of this monomer proceeds via an ordinary radical mechanism. The apparent activation energy for overall polymerization was calculated to be 20.9 kcal/mole. Moreover, this monomer was copolymerized with methyl methacrylate, acrylonitrile, vinyl acetate, phenyl vinyl sulfide, maleic anhydride, and fumaronitrile at 60°C. From the results obtained, the copolymerization parameters were determined and discussed.  相似文献   

12.
The kinetics of free-radical polymerization of ethyl methacrylate (EMA) have been experimentally studied in bulk and in 50% solution in DMF over the temperature range from 60 to 90°C. At low conversion, the kinetic parameters have been determined, including constants for chain transfer to monomer and solvent. These parameters have then been used to model the kinetic behavior at high conversion using previously derived equations. The results indicate that the equations satisfactorily predict the conversion and molecular weight averages and distributions as a function of time from zero to ca. 95% conversion.  相似文献   

13.
Ring-opening polymerization of 1,5-dioxepan-2-one initiated by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane was carried out in chloroform, dichloromethane, or 1,2-dichloroethane. Effects of reaction temperature, solvent, and monomer-to-initiator ratio were investigated. Polymerization kinetics showed a first-order dependence on the monomer for polymerization in chloroform and dichloromethane at 40°C. The kinetic order with respect to the initiator were a first order when dichloromethane was used as the solvent, the order in initiator changed, depending on the initiator concentration when chloroform was used. A maximum in molecular weight was observed at 40°C when chloroform was used as the solvent. The change of solvent did not markedly alter the polymerization rate or the molecular weight of the polymers prepared, as expected from the coordination insertion mechanism. Depolymerization of the polymers formed was observed when the reaction was allowed to continue after complete monomer conversion in chloroform as reaction medium at 40°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3407–3417, 1999  相似文献   

14.
The distribution of vinyl chloride monomer (VCM) in vapor, water, swollen polymer, and free monomer phases as a function of conversion of VCM can be calculated from the related partition coefficients. It was found that the amount of monomer in the vapor and water phases is particularly significant, being 20% (at 60°C) of that in the polymer phase at the peak exotherm. Neglecting the VCM dissolved in water and that in the head space of the reactor would seriously overestimate the polymerization rate and overdesign the required cooling capacity of the reactor. From the distribution the relation between conversion (x) vs pressure (P) after the pressure starts to drop can be developed and used to determine conversion at termination by pressure measurement. The results of ×vs P from our partition coefficient approach are consistent with those derived from Flory-Huggin's equation. Also the knowledge of VCM distribution at termination of the polymerization will assist VCM accountability and stripper design.  相似文献   

15.
The electrochemically initiated polymerization of 1,3-dioxolane has been investigated in 1,2-dichloroethane with tetrabutylammonium perchlorate as background electrolyte.The anode process is due to the monomer, and its intermediate oxidation products are probably the initiating species; once initiated, the polymerization reaches an equilibrium which is largely independent of the amount of the initially furnished charge.The conversion at equilibrium on the contrary depends on temperature and initial monomer concentration. The kinetic curves at 50° do not exhibit induction and acceleration periods but autocatalysis becomes important at lower temperature.The polymerization seems slower in dichloromethane, but the process trends to the same equilibrium conversion.The molecular weight of the polymers depends on temperature, monomer concentration and amount of initiating charge: apart from some chain transfer acting in the first stage of polymerization, the process exhibits “living” features in the increase of molecular weight with conversion.  相似文献   

16.
The initial stages of the free radical polymerization of diethylene glycol bis(allyl carbonate) at temperatures of 35–65°C have been studied. The polymer is unsaturated and cyclization to give a 16-membered ring occurs only to a small extent. The kinetic order with respect to the initiator, di-sec-butyl peroxydicarbonate, has an average value of 0.79; the order increases slightly with peroxydicarbonate concentration over the range 0.018–0.22M. The molecular weight of the polymer isolated after 3% polymerization is close to 19,000. It shows no significant dependence on initiator concentration or on temperature. The dominant feature of the bulk polymerization, as in free radical polymerization of the other allyl and diallyl monomers, is degradative chain transfer in which the growing polymer radical abstracts a hydrogen atom from a monomer unit to give a relatively unreactive allylic radical. The dependence of rate on initiator concentration is rationalized if some of these allylic radicals are able to reinitiate polymerization. The transfer constant to monomer is 0.014 at 50°C, assuming that the main termination step involves mutual termination of allylic radicals. Carbon tetrachloride is an active transfer agent with a transfer constant of 0.20 ± 0.04 at 50°C. Toluene, which is less active, has a transfer constant of 0.0064 at 50°C and also retards the polymerization. Some kinetic studies have been made with other initiators, including di-2-methyl-pentanoyl peroxide which initiates polymerization at temperatures as low as 13°C.  相似文献   

17.
张帆  许志献  金日光 《高分子学报》2008,(11):1102-1107
从负离子引发丙烯腈沉淀聚合的亚微观过程出发,建立了动力学模型,并通过初生态沉淀聚集体联结方法数的叠加,推导出了动力学方程.在不同条件下(单体浓度、引发剂浓度、时间)对丙烯腈沉淀聚合进行了研究,用推导的动力学方程处理数据后发现实验数据与理论相吻合.丙烯腈负离子沉淀聚合的聚合反应为对单体浓度的一级反应,对引发剂浓度的一级反应,反应速率方程为Rp=k0[M]1.0[I]1.0.  相似文献   

18.
Summary: This work demonstrated the severity of heterogeneity issues with ampoule reactors in bulk atom transfer radical polymerization of methyl methacrylate. The kinetic data of CuII concentration, monomer conversion, and polymer molecular weight varied from location to location along the ampoule. However, the polymer molecular weight versus conversion data from different locations fell into a single theoretical line. All locations except for the bottom part of the ampoule produced polymers having narrow molecular weight distribution.

Conversion versus time at different locations for the ATRP of MMA at 70 °C.  相似文献   


19.
The kinetics of the γ-ray-initiated polymerization of acrylonitrile in bulk are reexamined in broad ranges of temperatures and radiation dose rates. The discussion of the results coupled with an analysis of earlier data indicate that the polymerization of acrylonitrile proceeds by different mechanisms depending on the reaction temperature. Above 60°C the precipitated growing chains recombine readily; therefore, the autoaccelerated conversion curves cannot be accounted for by an “occlusion effect.” It is suggested that autoacceleration is caused by a fast propagation taking place in oriented monomer aggregates which result from dipole-dipole association of the monomer with the polymer chains formed in the early stages of the reaction (“matrix effect”). Below 10°C the precipitated growing chains are buried in the dead polymer and monomer diffusion toward the occluded chain ends is very limited (“occlusion effect”). Between 10 and 60°C the system gradually changes from one dominated by “occlusion” to one where the “matrix effect” determines the kinetic behavior. The conclusion based on kinetic data is in agreement with results obtained from studies of the postpolymerization in these various systems.  相似文献   

20.
2-Vinylthiophene was found to undergo thermal polymerization. With benzene as diluent, the overall rate of polymerization was proportional to the 2.5 power of monomer concentration, suggesting that the thermal initiation is a termolecular process. The following Arrhenius equation was obtained from the polymerization data for the range 55–100°C: The activation energy of the thermal initiation was estimated to be 28.2 kcal/mole, which was similar to those values obtained for styrene and 2-vinylfuran. When a dilute solution of the monomer in bromobenzene was heated in an ampoule at 151°C, a dimer, mp 82°C, was obtained in a good yield. The spectroscopic data indicated that the dimer was a Diels-Alder type adduct. The initiation of the thermal polymerization was considered to involve hydrogen abstraction by monomer from the Diels-Alder dimer, in common with the initiation of other vinylaromatic monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号