首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conclusions Research over the last 45 years has revealed the existence of long-range surface forces of three types: molecular, ionic-electrostatic, and structural. These forces lie at the foundation of the theory of stability of disperse systems and colloids, and are the basis of many processes: swelling, frost-heaving of soils, wetting phenomena, and thermoosmotic phenomena. The structural features of boundary layers of polar liquids and water lead to their anisotropy and to changes in their heat capacity and density.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1721–1725, August, 1982.  相似文献   

2.
The hydration force between large molecules or large surfaces is built on weak perturbation of many solvent molecules. The structure of the surface sets boundary conditions on solvent while structural forces within the solvent set the range. For this collection of essays, we focused on forces between surfaces at nanometer separations. It is instructive to distinguish primary hydration, the binding of water and perturbation within a few layers, from secondary hydration related to redistribution of solutes. The subject is still basically empirical, lacking satisfactory theory and sufficient measurement.  相似文献   

3.
Electrosurface properties and aggregation stability of natural diamond sol in aqueous LiCl solutions at pH 6.0 and 9.0 are studied. It is shown that the aggregation of particles occurs according to the barrierless mechanism in the potential minimum, the depth of which is determined by the radius of structural forces. The ranges of the parameters of the structural forces of natural diamond in these solutions are determined. It is revealed that the extension of the water boundary layers on natural diamond decreases with an increase LiCl concentration and pH.  相似文献   

4.
We analyzed the interaction between chemically grafted polysaccharide layers in aqueous solutions. To fabricate such layers, an end-terminated dextran silane coupling agent was synthesized and the polydextran was grafted to oxidized silicon wafers and to silica particles. This resulted in the formation of a 28 nm thick layer (in air) and a grafted amount of 40 mg/m(2) as determined by ellipsometry. The physical properties of the grafted layer were investigated in aqueous solutions by atomic force microscope imaging and colloidal probe force measurements. Surface and friction forces were measured between one bare and one polydextran coated silica surface. A notable feature was a bridging attraction due to affinity between dextran and the silica surface. Surface interactions and friction forces were also investigated between two surfaces coated with grafted polydextran. Repulsive forces were predominant, but nevertheless a high friction force was observed. The repulsive forces were enhanced by addition of sodium dodecyl sulfate (SDS) that associates with the tethered polydextran layers. SDS also decreased the friction force. Our data suggests that energy dissipation due to shear-induced structural changes within the grafted layer is of prime importance for the high friction forces observed, in particular deformation of protrusions in the surface layer.  相似文献   

5.
Applying an electric field to an aqueous colloidal dispersion establishes a complex interplay of forces among the highly mobile simple ions, the more highly charged but less mobile colloidal spheres, and the surrounding water. This interplay can induce a wide variety of visually striking dynamical instabilities even when the applied field is constant. This paper reports on the highly organized patterns that emerge when electrohydrodynamic forces compete with gravity in thin layers of charge-stabilized colloidal spheres subjected to low voltages between parallel-plate electrodes. Depending on the conditions, these spheres can form levitating clusters with morphologies ranging from tumbling clouds to toroidal vortex rings and to writhing labyrinths.  相似文献   

6.
Wetting films     
Wetting films of nonpolar liquids are stabilized due to action of the repulsion dispersion forces. For aqueous films, it is necessary to takes additionally into account action of electrostatical and structural forces.Disjoining pressure isotherms of a thick methastable β -films of electrolyte and surfactant solutions can be quantitavely described on the basis of theory of long-range electrostatical forces. Thicknesses of thinner α-films of water formed as a result of vapour adsorption depend on the surface hydrophilicity and are controlled by the action of structural repulsion forces.  相似文献   

7.
A mode coupling theory for the ideal glass transition temperature, or crossover temperature to highly activated dynamics in the deeply supercooled regime, T(c), has been developed for anisotropic polymer liquids. A generalization of a simplified mode coupling approach at the coarse-grained segment level is employed which utilizes structural and thermodynamic information from the anisotropic polymer reference interaction site model theory. Conformational alignment or/and coil deformation modifies equilibrium properties and constraining interchain forces thereby inducing anisotropic segmental dynamics. For liquid-crystalline polymers a small suppression of T(c) with increasing nematic or discotic orientational order is predicted. The underlying mechanism is reduction of the degree of coil interpenetration and intermolecular repulsive contacts due to segmental alignment. For rubber networks chain deformation results in an enhanced bulk modulus and a modest elevation of T(c) is predicted. The theory can also be qualitatively applied to systems that undergo nonuniversal local deformation and alignment, such as polymer thin films and grafted brush layers, and large elevations or depressions of T(c) are possible. Extension to treat directionally dependent collective barrier formation and activated hopping is possible.  相似文献   

8.
9.
Development of the concept of surface long-range forces and, in particular, the equilibrium disjoining pressure of liquid and gaseous interlayers has been set forth. Considered are the molecular, adsorption, electrical, structural, and electronic components of disjoining pressure. The contribution of the disjoining pressure to the hydrodynamics of thin layers is considered. The first theory of the frost heaving of soils has been formulated. Stated are the investigations of surface forces, in particular, in the processes of the formation of new interfaces and arising phenomena of the emission of electrons, ions, photons, and neutrons.  相似文献   

10.
The results and implications of direct force measurements between molecularly smooth mica surfaces in liquids are reviewed. These discussions include four interactions fundamental to colloid science: van der Waals forces, double layer forces, adhesion forces and structural or solvation forces (e.g. hydration forces). Also considered are the effects of preferential surface adsorption of solute molecules on these interactions, e.g. surfactant adsorptions from aqueous solutions and water condensation from non-aqueous solvents.In aqueous media it is apparent that the DLVO theory is valid at all surface separations down to the “force barrier”, but that under certain conditions hydration forces can become significant at distances below 30 Å.The measured adhesion force between two solid surfaces can be simply related to their surface energies and where meniscus forces are also present due to “capillary condensation” from vapor solvent, their effect on adhesion can be understood in terms of straightforward bulk thermodynamic principles. Here, too, it is concluded that structural forces cannot be ignored.Our results suggest that structural forces may either very monotonically with distance or be oscillatory with a periodicity equal to the molecular size. Their origin, nature, mode of action and importance for particle interactions will no doubt take many years to sort out.  相似文献   

11.
Effect of pH on the coagulation kinetics of microcrystalline cellulose dispersions in an aqueous 0.1 M NaCl solution is studied by the flow ultramicroscopy. The lowest coagulation rate is observed at pH 4.9. A decrease or an increase in pH gives rise to the coagulation rate approaching the rate of fast coagulation (according to Smoluchowski) at pH 1.0. Results of calculating the particle pair interaction energy in terms of the DLVO theory with allowance for only the molecular and ion electrostatic components suggest the dominance of attraction forces at any interparticle distances and cannot explain the data of experimental methods. The allowance for the structural component, which arises upon the overlap of water boundary layers surrounding hydrophilic particles of microcrystalline cellulose, makes it possible to treat the experimental results and estimate possible values of the K andl parameters of the equation for the structural component.  相似文献   

12.
13.
Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London-van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.  相似文献   

14.
The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such interactions. It has been observed that the interaction at low salt concentrations is dominated by electrical double layer (at large distances) and steric forces (at short distances), the latter being due to compression of the protein layers. The DLVO theory fits these experimental data quite well. However, a non-DLVO repulsive interaction, prior to contact of the protein layers, is observed at high salt concentration above the isoelectric point of the protein. This behavior could be explained if the presence of hydration forces in the system is assumed. The inclusion of a hydration term in the DLVO theory (extended DLVO theory) gives rise to a better agreement between the theoretical fits and the experimental results. These results seem to suggest that the hydration forces play a very important role in the stability of the proteins in the physiological media.  相似文献   

15.
A modified set-up was applied to carry out direct measurements of the forces of molecular attraction of gold spheres and crossed quartz filaments in air within the region of distances from 10 to 100 nm. Some quantitative deviations from Lifshitz's theory for gold may be attributed to an insufficient reliability of the spectral data used in the calculations. The DLVO theory adequately describes the interaction of glass threads in KCl (10?3 ÷ 10?5 N) solutions within the region of 5 to 100 nm. At a distance smaller than 5 nm, the deviations from DLVO theory are attributable to the influence of structural forces.When the contact between crossed hydrophobized quartz threads in water is broken, the attraction forces (which exceed the molecular forces by several orders of magnitude) at a distance of up to 300 nm are detected.  相似文献   

16.
Neutron reflectivity has been used to determine the thickness and surface coverage of monolayers of two 14-residue beta-hairpin peptides adsorbed at the air/water interface. The peptides differed only in that one was labeled with a fluorophore, while the other was not. The neutron reflection measurements were mainly made in null reflecting water, NRW, containing 8.1% D(2)O. Under this isotopic contrast the water is invisible to neutrons and the specular signal was then only from the peptide layer. At the highest concentration of ca. 4 microg/mL studied, the area per peptide molecule (A) was found to be 230 +/- 10 and 210 +/- 10 A(2) for the peptides with and without a BODIPY-based fluorophore, respectively. The thickness of the peptide layers was about 10 A for a Gaussian distribution. With decreasing bulk peptide concentration, both surface excess and layer thickness showed a steady trend of decrease. While the neutron results clearly indicate structural changes within the peptide monolayers with increasing bulk concentration, the outstanding structural feature is the formation of rather uniform peptide layers, consistent with the structural characteristics typical of beta-strand peptide conformations. These structural features are well supported by the parallel measurements of the adsorbed layers in D(2)O. With this isotopic contrast the neutron reflectivity provides an estimate about the extent of immersion of the peptide layers into water. The results strongly suggest that the 14-mer peptide monolayers were fully afloat on the surface of water, with only the carboxy groups on Glu residues hydrated.  相似文献   

17.
The interaction forces between adsorbed polymer layers were investigated. Two types of graft copolymers that were adsorbed on hydrophobic surfaces have been investigated: (i) a graft copolymer consisting of polymethylmethacrylate/polymethacrylic acid back bone (the B chain) on which several poly(ethylene oxide) chains are grafted (to be referred to as PMMA/PEOn); and (ii) a graft copolymer consisting of inulin (linear polyfructose with degree of polymerization > 23) (the A chain) on which several C12 chains are grafted (INUTEC SP1). In the first case adsorbed layers of the graft copolymer were obtained on mica sheets and the interaction forces were measured using the surface force apparatus. In the second case the interaction forces were measured using Atomic Force Microscopy (AFM). For this purpose a hydrophobically modified glass sphere was attached to the tip of the cantilever of the AFM and the glass plate was also made hydrophobic. Both the sphere and the glass plate contained an adsorbed layer of INUTEC SP1.In the surface forces apparatus one essentially measures the energy E(D)–distance D curves for the graft copolymer of PMMA/PEOn between mica surfaces bearing the graft copolymer and this could be converted to interaction energy between flat surfaces. Using the de Gennes scaling theory, it is possible to calculate the interaction energy between the polymer layers. The same graft copolymer was used in latex dispersions and the high frequency modulus G′ was measured as a function of the volume fraction ? of the dispersion. This high frequency modulus could be related to the potential of mean force. In this way one could compare the results obtained from rheology and those obtained from direct measurement of interaction forces.In the AFM method, the interaction forces are measured in the contact area between two surfaces, i.e. a spherical glass particle and a glass plate. Both glass spheres and plates were hydrophobized using dichlorodimethylsilane. Results were obtained for adsorbed layers of INUTEC SP1 in water and in the presence of various concentrations of Na2SO4 (0.3, 0.8, 1.0 and 1.5 mol dm− 3). All results showed a rapid increase of force with a decrease of separation distance and the forces were still repulsive up to the highest Na2SO4 concentration. This explains the high stability of dispersions when using INUTEC SP1 as stabilizer.  相似文献   

18.
Thin liquid film instabilities driven by van der Waals forces and in the proximity of soft elastomeric layers are considered in this work through two model problems: (i) a liquid film resting on an elastomeric layer and (ii) a liquid film bounded from one side by a rigid substrate and from the other side by an elastomeric layer. The elastomeric layers are modeled as linear viscoelastic solids, van der Waals forces are assumed to act only in the liquid, and lubrication theory and linear stability analysis are applied. For a liquid film resting on an elastomeric layer, substrate deformability has a destabilizing effect, as evidenced by an increase in the maximum growth rate and range of unstable wavenumbers. The destabilization worsens for thicker solid layers and is due to a lowering of the effective liquid-air interfacial tension. For an elastomeric layer resting on a liquid film, layer deformability has a stabilizing effect for thin layers but a destabilizing effect for thicker layers, with the former due to an enhancement and the latter due to a reduction of the effective solid-air interfacial tension. The results presented here suggest the possibility of exploiting the dewetting of thin liquid films to create topographically patterned surfaces on soft polymeric solids.  相似文献   

19.
Approaches to hydration, old and new: Insights through Hofmeister effects   总被引:1,自引:0,他引:1  
Hydration effects in colloidal interactions or problems involving electrolytes are usually taken care of by effective electrostatic potentials that subsume notions like hydrated ion size, Gurney potentials, soft and hard, chaotropic and cosmotropic ions, and inner and outer Helmholtz planes. Quantum fluctuation (dispersion) forces between ions and between ions and surfaces are missing from classical theories, at least not explicit in standard approaches to hydration. This paper outlines an evolving back-to-basics approach that allows these ion specific forces to be included in theories quantitatively. In this approach ab initio quantum mechanics is used to calculate dynamic polarisabilities of ions and to quantify bare ion radii. The ionic dispersion potentials between ions, and between ions and surfaces in water can then be given explicit analytic form from an extension of Lifshitz theory. They are included in the theory along with electrostatic potentials. In a first stage the primitive (continuum solvent) model provides a skeletal theory on which to build in hydration. Extension of the ab initio calculations to include “dressed” ions, i.e. water hydration shells for cosmotropic ions, quadrupolar and octupolar polarisability contributions and; for colloids, allowance for a surface hydration layer, permits quantification of Hofmeister effects and Gurney potentials. With these extensions, primary hydration forces (short range repulsion) arise due to an interplay between surface hydration layers and specific ion interactions. Apparent longer range “secondary hydration forces” are shown to be a consequence of ion-surface dispersion interactions and are not true “hydration forces”.  相似文献   

20.
A lattice analog of density functional theory is used to explore the structural and thermodynamic properties of critical nuclei in mixtures of particles with attractive anisotropic interactions. Protein molecules are assumed to occupy the sites on a regular cubic lattice, with effective directional interactions that mimic hydrogen bonding and the solvation forces induced by water. Interaction parameters are chosen to qualitatively reproduce the phase behavior of protein solutions. Our model predicts that critical nuclei of the solidlike phase have nonspherical shapes, and that their specific geometry depends on the nature of the anisotropic interactions. Molecules tend to align in distinctive ways in the core and in the interfacial region of these critical clusters, and the width and structure of the interface are highly affected by the presence of a metastable fluid-fluid critical point. Close to the critical region, the height of the barrier to nucleation is strongly reduced; this effect is enhanced by increasing the anisotropy of the intermolecular interactions. Unlike systems with short-range isotropic interactions, nucleation in our model is initiated by highly ordered clusters in which the order-disorder transition is confined to the interfacial region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号