首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以γ-射线预辐照,在聚丙烯(PP)纤维上接枝丙烯酰胺(AAm),再经过Hofmarm降解反应制备弱碱性离子交换纤维(PP-g-YAm)交换容量达到5.47mmol/g干纤维.研究了PP-g-VAm纤维对链霉素的吸附和解吸性能.其吸附等温曲线符合Langmiur吸附等温式.静态吸附试验表明,PP-g-AAm纤维对链霉素的吸附量可以达到446.96mg/g千纤维,脱附率达到98.9%.  相似文献   

2.
The graft polymerization of styrene onto high-density polyethylene films was carried out by γ-irradiation in the vapor phase. Two methods were used for grafting in these experiments: a preirradiation method and a simultaneous irradiation method. The effects of these grafting methods on the reaction mechanism of grafting and on the properties of the grafted samples were investigated. The amounts of styrene homopolymer in the grafted samples is under 2% in the case of the preirradiation method and above 10% in the case of the simultaneous irradiation method. The activation energies were calculated to be 18 kcal/mole for grafting in the preirradiation method and 15 kcal/mole for weight increase of polyethylene films in styrene vapor. The difference in the dimensional expansion between in the direction of stretching and the direction prependicular to it is smaller with preirradiation grafting than with grafting by the simultaneous irradiation method. Differential thermal analysis of the grafted films shows an endothermic peak due thermal decomposition which decreases gradually from 450°C to 415°C with increase in degree of grafting from 30 to 60%. The lowering of this peak temperature appears at a lower degree of grafting when the preirradiation method is used. On the basis of these results, it is concluded that the reaction rate of radiation-induced grafting in the vapor phase depends closely upon the processes of adsorption, dissolution, and diffusion of styrene monomer in polyethylene films; in the case of simultaneous irradiation method, the reaction proceeds comparatively uniformly in the amorphous region, while in the case of the preirradiation method, the reaction proceeds mainly at the boundary of the crystalline and amorphous regions.  相似文献   

3.
A kinetic study has been made on the preirradiation grafting of acrylic acid (AAc) onto poly(tetrafluoroethylene–perfluorovinyl ether) (PFA) film. The effect of grafting conditions was investigated. The dependences of the grafting rate on preirradiation dose and monomer concentration was found to be of the order of 0.5 and 1.3, respectively. The final degree of grafting was found to increase with dose and monomer concentration. However, it decreases as the grafting temperature increase. The overall activation energy for the graft polymerization was calculated from Arrhenius plots to be 5.6 kcal/mol. The activation energy for this grafting system was found to be independent of preirradiation dose used in the range from 10 to 100 kGy. The relationship between the grafting rate and film thickness gave a negative first-order dependence. The results suggest that the grafting proceeds by radical mechanism with bimolecular termination of growing chain radicals. It was reasonable concluded that this grafting proceeds from the surface to the center of film with progressive monomer diffusion through the grafted layer which swells in the monomer solution.  相似文献   

4.
The graft copolymerizations of styrene onto poly(ethylene terephthalate) (PET) and nylon fibers were carried out by the mutual irradiation and preirradiation methods. True graft copolymers were isolated from the products by extraction and characterized by hydrolysis and osmometry. Among the swelling agents employed, methanol was most effective for increasing the extent of grafting onto PET. In both methods of the grafting, the molecular weight of polystyrene formed in the substrate matrix was higher than one million if no chain-transfer agent was added to the monomer solution. Similar to the case of radiation grafting onto poly(vinyl alcohol) and cellulose, the isolated graft copolymer carried only one branch per copolymer molecule in both cases. Of great interest is the particularly low extent of grafting in the case of PET–styrene. This should be attributed to the low sensitivity of PET to radiation. The grafting site on the mother polymer molecule is discussed on the basis of the solution behavior of the branch polymers separated from the backbone.  相似文献   

5.
Preirradiation grafting of N-vinylpyrrolidone (NVP) onto poly(tetrafluoroethylene) (PTFE) and poly(tetrafluoroethylene-hexafluoropropylene) (FEP) films was investigated. The influence of grafting parameters such as preirradiation dose, monomer concentration, and grafting temperature on the rate and grafting yield was studied. Different solvents were used for diluting the monomer and it was found that the aqueous monomer solution at a concentration of 80 wt% was suitable for this grafting system. However, the graft polymerization of NVP in benzene terminated within a short time without significant grafting yield. The dependence of the grafting rate on preirradiation dose and monomer concentration was 1.2 and 1.07 order, respectively, for grafting onto PTFE films and 1.1 and 1.2 order, respectively, for grafting onto FEP films. Arrhenius plots for grafting onto PTFE films showed a breaking point at ca. 35°C and the overall activation energies were calculated as 23.6 and 9.0 Kcal/mol below and above 35°C, respectively. For grafting onto FEP films, however, no break was observed in the Arrhenius plots; the overall activation energy was 11.9 Kcal/mol. The swelling behavior and electric resistance of the grafted materials were investigated.  相似文献   

6.
聚四氟乙烯强酸性阳离子交换纤维的制备研究   总被引:2,自引:0,他引:2  
采用共辐射引发将苯乙烯接枝到聚四氟乙烯(PTFE)纤维上,然后磺化制备出强酸性和超强酸性离子交换纤维,接枝率随苯乙烯单体浓度和辐射剂量增加而提高,随辐射剂量率的增加而降低,当接枝率为20%左右时,PTFE-co-St-SO3H离子交换纤维的Hammett酸度函数低于-11.99,呈现出超强酸性。  相似文献   

7.
A bifunctional cation exchange fiber was prepared by an efficient and environmentally benign method. In this method, sodium p‐styrene sulfonate (SSS) was cografted directly onto the polypropylene (PP) fiber along with acrylic acid (AA), which eliminated the sulfonation process of grafting fiber with concentrated sulfuric acid or chlorosulfonic acid in the conventional method. Effects of the grafting conditions such as reaction temperature, reaction time, pH value, and the influence of acrylic acid and metallic salt on the graft copolymer reaction were investigated. The physicochemical properties of the cation exchange fibers were characterized with diffuse reflectance infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), X‐ray diffractometer (XRD), thermal gravimetric analysis (TGA), TG‐IR analysis, and monofilament tensile properties test. The experimental results indicate that the optimal conditions of pre‐irradiation grafting are 80°C for 5 hr, and the mechanical properties and thermal stability of the product are better than those of commercial materials (Fiban.K‐1). The total static ion exchange capacity (IEC) of the cationic exchange fiber is up to 5.33 mmol/g. The maximal IEC contribution from the strong acid part is 2.47 mmol/g. This synthetic method provides a clean industrial way for the preparation of bifunctional cation exchange fibers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
聚四氟乙烯微粉辐照接枝苯乙烯的XPS研究   总被引:2,自引:0,他引:2  
聚四氟乙烯微粉辐照接枝苯乙烯的XPS研究许观藩,罗云霞,杨弘(中国科学院长春应用化学研究所,长春,130022)关键词聚四氟乙烯,苯乙烯,表面接枝,XPS用辐照方法在疏水性高聚物材料表面接枝聚合亲水性单体,可以达到改性的目的.文献中所用的高聚物材料包...  相似文献   

9.
This study concerns the radiation grafting of styrene onto poly(tetrafluoroethylene‐co‐perfluoropropylvinylether) (PFA) substrates and the penetration depth of the graft. Grafting was obtained by the simultaneous irradiation method, and the spectroscopic analysis was made with the micro‐Raman technique. Effects of grafting conditions such as the type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol, respectively. A mixture of methanol and dichloromethane used as a solvent for styrene achieved a higher degree of grafting and concentration of grafted polystyrene onto the surface of PFA substrates than solutions of the monomer in the separate solvents. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3191–3199, 2002  相似文献   

10.
Gamma-radiation-induced graft copolymerization of methyl methacrylate onto natural lignocellulose (jute) fiber was carried out by the preirradiation method in an aqueous medium by using octylphenoxy-polyethoxyethanol as an emulsifier. The different factors that influenced the graft copolymer reaction process were investigated. In the case of radiation-dose-dependent grafting, samples irradiated in the presence of air produced up to 73% graft weight compared to 53% obtained in the case of irradiation in a nitrogen environment. By assuming Arrhenius reaction kinetics, the activation energy (E(a)) of the grafting reaction process was evaluated for different reaction temperatures. Moreover, the graft copolymer reaction was controlled by incorporating a homopolymer-inhibiting agent and three different chain-transfer agents in the reaction medium. The mechanical and thermal properties of jute fiber 'as received' and jute-graft-poly(methyl methacrylate) were also investigated. The results showed that the percentage of grafting with jute fiber has a significant effect on the properties. The kinetic parameters were evaluated from TGA thermograms by using Broido's method in the temperature range 240-350 degrees C. Scanning electron micrographs show that the structural changes on the surface of jute fibers were induced by graft copolymerization of methyl methacrylate monomer. Fiber-fiber surface friction was measured in terms of the average maximum load and the kinetic friction. SEM of jute-graft-poly(methyl methacrylate).  相似文献   

11.
Radiation-induced grafting of dimethylaminoethylmethacrylate onto poly(propylene) films by preirradiation method in presence of air was investigated. The effects of monomer concentration, preirradiation dose and temperature on grafting value as well as the effect of grafting value on crystallinity of the modified polymer were determined.  相似文献   

12.
Pre‐irradiation grafting of styrene/divinylbenzene (DVB) onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films was studied with respect to the influence of solvent. Particularly favorable grafting conditions with long radical lifetimes and reasonably high polymerization rates were achieved with solvents that are precipitants for the newly formed polystyrene, e.g., low‐molecular‐mass alcohols like iPrOH, AcOH, their mixtures with H2O, and H2O/surfactant systems. Using one of these solvents significantly extended the range of accessible graft levels, and a specific degree of grafting was obtained at a much lower monomer concentration and irradiation dose than with grafting in a good solvent such as toluene. As practical consequences, the monomer was used more efficiently, and the radiation damage of the perfluorinated base material was reduced with the result of improved mechanical properties of the grafted films.  相似文献   

13.
Hydrophilic carboxyl-containing fluoromembranes were obtained by preirradiation grafting of acrylic acid onto ethylene-tetrafluoroethylene film. The dependence of the grafting reaction on temperature, monomer concentration, nature and concentration of inhibitor, crosslinking agent, solvent, and on the preirradiation dose was investigated. The grafting rates increase with temperature, whereas the saturation degree of grafting (SDG) decreases. Addition of inhibitor minimizes homopolymerization and at the same time hinders the grafting reaction. The SDG increases markedly with monomer concentration until it reaches a maximum and thereafter decreases. The grafting rates increase with preirradiation dose. Addition of crosslinking agent initially decreases the SDG, and thereafter increases. The highest grafting rates are obtained using water as solvent followed by methanol and ethanol. The results are discussed on the basis of various parameters: interaction between monomer diffusibility and the viscosity of the monomer bath, the mutual reactivity of monomer, and the crosslinking agent. An agreement is observed between the values of the electrical resistance and the saturation degree of grafting. © 1996 John Wiley & Sons, Inc.  相似文献   

14.

The graft copolymerization of methyl methacrylate (MMA) onto commercial acrylic fibers (PAN) has been studied using Azobis(isobutyro)nitrile (AIBN) as an initiator. MMA grafting initiated by radicals formed from thermal decomposition of AIBN. In this study, the effects of monomer and initiator concentration, time and temperature reaction on the grafting yield have been investigated.

The optimum conditions for this grafting reaction were obtained with an MMA concentration of 0.7 M, an AIBN concentration of 0.0073 M, a reaction temperature of T=85°C and with a 60 min reaction time.

The fiber structure has been investigated by different experimental techniques of characterization such as Fourier transform infrared spectroscopy (FT‐IR), calorimetric analysis (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water absorption and the physical and mechanical properties has also been investigated in this study. The thermal analysis data showed that by increasing grafting yield, little changes have occurred in fibers samples up to 13.5% of grafting yield and the thermal transitions of grafted fibers have approximately the same behavior compared with the raw fibers sample. Grafting also slightly affected the fiber morphology. The experimental data of mechanical properties clearly show that by increasing grafting yield, max extension will decrease but this change up to 13.5% grafting yield is barely noticeable. Grafting of poly MMA improved water absorption.  相似文献   

15.
Pre‐irradiation grafting of styrene/divinylbenzene (DVB) onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films from isopropanol (iPrOH) solution was investigated with respect to the effect of irradiation dose, film thickness, cross‐linker concentration, and reaction temperature. A mathematical model was applied to the kinetic curves to extract information on the polymerization rate, the radical‐recombination rate, and the grafting through time. It turned out that the two closely correlated reaction rates for polymerization and radical recombination can be varied over a wide range by changing the irradiation dose, the cross‐linker concentration, and the reaction temperature. On the other hand, the time until the grafting front has progressed to the center of the film is mainly affected by the film thickness and the reaction temperature. The formation of homopolymer in the grafting solution increases steeply with temperature and cross‐linker concentration.  相似文献   

16.
This paper describes an approach to manufacture hierarchical composites from environmentally friendly materials by grafting cellulose whiskers onto regenerated cellulose fibers (Cordenka 700). Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy and X-ray diffraction analysis were performed to verify the degree of modification. The mechanical properties of the unmodified and modified fibers were analyzed using fiber bundle tensile static and loading–unloading tests. To show the effect of cellulose whiskers grafting on the Cordenka fibers, epoxy based composites were manufactured and tensile tests done on transverse uni-directional specimens. The mechanical properties were significantly increased by fiber modification and addition of the nano-phase into composite reinforced with micro-sized fibers.  相似文献   

17.
An attempt has been made to graft a hydrophylic monomer of N,N.dimethyl acrylamide (DMAA) onto natural rubber (NR) tube by simultaneous, per-oxidation and preirradiation grafting techniques. It was found that the grafting by simultaneous grafting technique results a maximum 29 wt% degree of grafting and by peroxidation and preirradiation techniques, results the maximum 42 wt% and 13 wt% degree of grafting, respectively. It was concluded that the peroxidation technique is the most appropriate to obtain a high degree of grafting in radiation copolymerization of DMAA onto NR.  相似文献   

18.
Graft polymerization of acrylonitrile onto polypropylene (PP) monofilament was carried out by a preirradiation method using a 60Co gamma radiation source. The influence of synthesis conditions, such as preirradiation dose, reaction time, monomer concentration, reaction temperature and additives was determined. The grafting was considerably influenced by the instantaneous swelling of the monofilament in the reaction mixture during the course of the grafting process. The order of dependence of the rate of grafting on monomer concentration was found to be 1.04. The nature of the medium of the grafting and the additives had profound influence over the grafting reaction. The accelerative effects of solvent medium on the grafting were higher in methylethyl ketone (MEK) and dimethylformamide (DMF) as compared to methanol. At the same time, partial replacement of DMF with water led to acceleration in the grafting with peak maxima at 20% solvent composition. The addition of a small amount of sulfuric acid to the reaction mixture also resulted in a significant acceleration of the degree of grafting.  相似文献   

19.
To improve the surface of carbon fiber, the grafting reaction of copolymer containing vinyl ferrocene (VFE) onto a carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber was investigated. The copolymer containing VFE was prepared by the radical copolymerization of VFE with vinyl monomers, such as methyl methacrylate (MMA) and styrene, using 2,2′‐azobisisobutyronitrile as an initiator. By heating the carbon fiber with poly(VFE‐co‐MMA) (number‐average molecular weight: 2.1 × 104) in the presence of aluminum chloride and aluminum powder, the copolymer was grafted onto the surface. The percentage of grafting reached 46.1%. On the contrary, in the absence of aluminum chloride, no grafting of the copolymer was observed. Therefore, it is considered that the copolymer was grafted onto the carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber. The molar number of grafted polymer chain on the carbon‐fiber surface decreased with increasing molecular weight of poly(VFE‐co‐MMA) because the steric hindrance of grafted copolymer on the carbon‐fiber surface increases with increasing molecular weight of poly(VFE‐co‐MMA). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1868–1875, 2002  相似文献   

20.
Summary: The grafting of styrene into commercially available fluoropolymer films by the pre-irradiation method has been investigated. Poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) and poly(tetrafluorethylene-co-ethylene) (ETFE) were chosen as the base polymer material. The influence of the base material, the pre-irradiation dose, and the storage time between the irradiation and the grafting step on the yield of grafting was examined. The base materials were pre-treated by irradiation in the molten state under oxygen-free conditions in order to create branches and cross-links. The effect of pre-treatment on the yield of grafting was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号