首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A thermodynamic formalism is developed for incorporating the effects of charge regulation on the ion-exchange adsorption of proteins under mass-overloaded conditions as described by the steric mass-action (SMA) isotherm. To accomplish this, the pH titration behavior of a protein and the associated adsorption equilibrium of the various charged forms of a protein are incorporated into a model which also accounts for the steric hindrance of salt counterions caused by protein adsorption. For the case where the protein is dilute, the new model reduces to the protein adsorption model described recently by the authors which accounts for charge regulation. Similarly, the new model reduces to the steric mass-action isotherm developed by Brooks and Cramer which applies to mass-overloaded conditions for the case where charge regulation is ignored so that the protein has a fixed charge. Calculations using the new model were found to agree with experimental data for the adsorption of bovine serum albumin (BSA) on an anion-exchange column packing when using reasonable physical properties. The new model was also used to develop an improved theoretical criterion for determining the conditions required for an adsorbed species to displace a protein in displacement chromatography when the pH is near the protein pI.  相似文献   

2.
Experimental studies were carried out on the non-linear adsorption properties of dextran-based polyelectrolytes in anion- and cation-exchange chromatographic systems. By monitoring both the induced salt gradients and sequential breakthrough fronts, parameters were determined for use in a Steric Mass Action (SMA) model of non-linear ion-exchange chromatography. These parameters include: total ion capacity of the columns, characteristic charge, steric factor, equilibrium constant, and maximum adsorptive capacity for each of the polyelectrolytes. In addition the number of functional groups were determined by elemental analysis. The values of the SMA parameters were found to be independent of salt and polyelectrolyte bulk phase compositions. Parameters were also determined for a variety of proteins. Experimental isotherms for the polyelectrolytes and proteins were compared with those simulated by the SMA model. Finally, the implications of polyelectrolyte adsorption properties with respect to their ability to act as efficient displacers in ion-exchange displacement systems are discussed.  相似文献   

3.
The retention and the resolution of beta-lactoglobulin A and B (LgA, LgB) were investigated with various ion-exchange chromatography media. The number of sites involved in the retention (adsorption) decreased as the mobile phase pH approached the isoelectric points pI (=5.1-5.2). However, even at pH 5.2 both LgA and LgB were retained on anion- and cation-exchange chromatography columns. The separation (resolution) of LgA and LgB became better when the pH approached the pI in anion-exchange chromatography columns where the number of adsorption site values are small (ca. 2-3). The two proteins were not separated on cation-exchange chromatography columns. Factors affecting the resolution and the retention near the pI were discussed.  相似文献   

4.
5.
A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein–ion-exchanger system, the physical meaning of the parameters was retained.  相似文献   

6.
The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion‐exchange columns is a well‐established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well‐characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed.  相似文献   

7.
The adsorption equilibrium of a glycoprotein, fructosyltransferase from Aureobasidium pullulans, on an anion-exchange resin, Sepabeads FP-DA activated with 0.1M NaOH, was investigated. The adsorption isotherms were determined at 20 degrees C in a phosphate-citrate buffer with pH 6.0 using the static method. Sodium chloride was used to adjust the ionic strength in the range from 0.0215 to 0.1215 mol dm(-3) which provided conditions varying from a weak effect of salt concentration on protein binding to its strong suppression. The equilibrium data were very well fitted by means of the steric mass-action model when the ion-exchange capacity of 290 mmol dm(-3) was obtained from independent frontal column experiments. The model fit provided the protein characteristic charge equal to 1.9, equilibrium constant 0.326, and steric factor 1.095 x 10(5).  相似文献   

8.
The concepts of total and free charge of platinum single crystal electrodes are revised in this paper, together with the associated concepts of potential of zero total and free charge. Total charges can be measured from CO displacement method. Results on solution of different pH are described. A novel buffer composition is used to attain pH values close to neutrality while avoiding interferences from anion adsorption processes. Stress is made on the fact that free charges are not accessible through electrochemical measurement for systems at equilibrium since adsorption processes (hydrogen and hydroxyl) interfere with free charge determination. Still, a model is described that allows, under some assumptions, extract free charge values and the corresponding potential of zero free charge for Pt(111) electrodes. On the other hand, fast measurement outside equilibrium can separate free charges from adsorption processes based on their different time constant. In this way, the laser induced temperature jump experiment allows determination of the potential of maximum entropy, a magnitude that is intimately related with the potential of zero free charge. Values of the potential of maximum entropy as a function of pH are given for the different basal planes of platinum.  相似文献   

9.
The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.  相似文献   

10.
This work demonstrates that a highly linear, controllable and wide-ranged pH-gradient can be generated through an ion-exchange chromatography (IEC) column. Such a pH-gradient anion-exchange chromatography was evaluated with 17 model proteins and found that acidic (pI<6) and basic (pI>8) proteins elute roughly at their pI, whereas neutral proteins (pI 6-8) elute at pH 8-9 regardless their pI values. Because of the flat nature of protein titration curves from pH approximately 6 to approximately 9, neutral proteins indeed exhibit nearly zero net charge at pH approximately 9. The elution-pH in pH-gradient IEC or the titration curve, but not the pI, was identified as the key parameter for pH optimization of preparative IEC in a fast and rational way. The pH-gradient IEC was also applied and found to be an excellent analytical tool for the fractionation of crude protein mixtures.  相似文献   

11.
In this work we present for the first time the use of ion-exchange liquid chromatography to separate the native form and a partially structured intermediate of the folding of the amyloidogenic protein beta2-microglobulin. Using a strong anion-exchange column that accounts for the differences in charge exposure of the two conformers, a LC–UV method is initially optimised in terms of mobile phase pH, composition and temperature. The preferred mobile phase conditions that afford useful information were found to be 35 mM ammonium formate, pH 7.4 at 25 °C. The dynamic equilibrium of the two species is demonstrated upon increasing the concentration of acetonitrile in the protein sample. Then, the chromatographic method is transferred to MS detection and the respective charge state distributions of the separated conformers are identified. The LC–MS results demonstrate that one of the conformers is partially unfolded, compared with the native and more compact species. The correspondence with previous results obtained in free solution by capillary electrophoresis suggest that strong ion exchange LC–MS does not alter beta2-microglobulin conformation and maintains the dynamic equilibrium already observed between the native protein and its folding intermediate.  相似文献   

12.
In polymer films carrying an excess of fixed charge the electrostatic penalty to bring ions of same charge from the bathing electrolyte into the film sets a membrane potential (Donnan Potential) across the film-electrolyte interface. This potential is responsible for the ionic permselectivity observed in polyelectrolyte membranes. We have used electrochemical measurements to probe the dependence of the Donnan potential on the acid-base equilibrium in layer-by-layer self-assembled polyelectrolyte multilayers. The voltammperogram peak position of the Os(III)/Os(II) couple in self-assembled polyelectrolyte multilayers comprised of poly(allylamine) derivatized with Os(bpy)(2)PyCl+ and poly(vinylsulfonate) was recorded in solutions of increasing ionic strength for different assembly and testing solution pH. Protonation-deprotonation of the weak redox poly(allylamine) changes the fixed charge population in the as prepared (intrinsic) self-assembled redox polyelectrolyte multilayers. For films assembled in solutions of pH higher than the test solution pH, the Donnan plots (E(app) vs log C) exhibit a negative slope (anionic exchanger) while for films assembled at lower pH than that of the test solution positive slopes (cationic exchanger) are apparent. The ion exchange mechanism has been supported by complementary electrochemical quartz crystal microbalance. X-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy experiments demonstrated that the as prepared films have a memory effect on their protonation state during assembly, which leads to the observed dependence of the Donnan potential on the adsorption pH.  相似文献   

13.
对蛋白质在离子交换柱上选择民性和非吸附特性进行了研究。蛋白质在有机磷酸锆阳离子色谱柱上,其保留作用随流动相pH值在离子强度的增加而减小;蛋白质在强阳离子和强阴离子色谱柱上的保留作用,即是流动相中的pH值等于蛋白质的等当点,其净电荷为零。不册蛋白质仍有不同程度的保留,这主要是由于蛋白质的三维结构使电荷 密度的大小和分布的不均匀以及离子交换填料表面性质的影响。  相似文献   

14.
The impact of key classes of compounds found in wine on protein removal by the ion-exchange resin, Macro-Prep® High S, was examined by adsorption isotherm experiments. A model wine system, which contained a prototypical protein Bovine Serum Albumin (BSA), was used. We systematically changed concentrations of individual chemical components to generate and compare adsorption isotherm plots and to quantify adsorption affinity or capacity parameters of Macro-Prep® High S ion-exchange resin. The pH (hydronium ion concentration), ethanol concentration, and prototypical phenolics and polysaccharide compounds are known to impact interactions with proteins and thus could alter the adsorption affinity and capacity of Macro-Prep® High S ion-exchange resin. At low equilibrium protein concentrations (< ~0.3 (g BSA)/L) and at high equilibrium protein concentrations in model wines at various pH, the adsorption behavior followed the Langmuir isotherm, most likely due to the resin acting as a monolayer adsorbent. The resulting range of BSA capacity was between 0.15–0.18 (g BSA)/(g Macro-Prep® High S resin). With the addition of ethanol, catechin, caffeic acid, and polysaccharides, the protein adsorption behavior was observed to differ at higher equilibrium protein concentrations (> ~0.3 (g BSA)/L), likely as a result of Macro-Prep® acting as an unrestricted multilayer adsorbent at these conditions. These data can be used to inform the design and scale-up of ion-exchange columns for removing proteins from wines.  相似文献   

15.
The ion exchange processes, which occur when two compartments of aqueous solutions separated by a semipermeable interface are placed in aqueous electrolyte solutions, were modeled using the multiphase Gibbs energy-minimization method. The Gibbs energy-minimization technique was applied for the ion-exchange system consisting of pulp fibers and the surrounding aqueous bulk solution. In such a system, the anionic acid groups inside the fibers cause an uneven distribution of ionic species between the solution within the fiber walls and the solution external to the fibers. The method was tested with four cation concentrations, which are naturally present in the fibers and whose partitioning between the fiber phase and the external solution phase has been described earlier. Although the Donnan distribution constant is not explicitly calculated in the Gibbs energy-minimization model, the results are consistent with the Donnan equilibrium theory. With the Gibbs energy-minimization multiphase model, the formation of solid precipitates can also be calculated.  相似文献   

16.
耿信笃  王彦  虞启明 《化学学报》2001,59(11):1847-1852
从气-固吸附体系中推导出的Langmuir方程,近一世纪来只能经验性地描述液相吸附。本研究以液-固界面上的溶质计量置换模型为基础,考虑到液-固吸附体系中各组分之间的相互作用,从理论上推导出了在液-固体系中描述在不同溶剂浓度条件下的溶质吸附的扩展的Langmuir公式,并称其为扩展的Langmuir公式。将Langmuir公式中经验参数与液相色谱中的计量置换平衡中的参相关联,还将其扩展到在不同溶剂浓度条件下的溶质定量吸附的描述,为Langmuir方程在描述不同溶剂浓度条件下的组分吸附奠定了理论基础,扩大了Langmuir公式的应用。以不同溶剂浓度条件下所得到的吸附等温线数据对理论推导出的扩展的Langmuir公式进行了验证,并与计算置平衡中的参数相关联,表现用吸附等温线法计算的计量置换参数Z与用高效液相色谱法得到的Z值符合程度很好。  相似文献   

17.
18.
19.
The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号