首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
以2,2'-双二苯基磷基-1,1'-联萘[(S)-1]为原料,与H2O2经氧化反应制得(S)-2,2'-双二苯基磷氧基-1,1'-联萘[(S)-2];(S)-2经酸性树脂催化硝化制得(S)-5,5'-二硝基-2,2'-双二苯基磷氧基-1,1'-联萘[(S)-3)];(S)-3经Pd/C催化硝基氢化还原制得(S)-5,5'-二氨基-2,2'-双二苯基磷氧基-1,1'-联萘[(S)-4];(S)-4经HSi Cl3/PPh3还原制得(S)-5,5'-二氨基-2,2'-双二苯基膦基-1,1'-联萘,总产率65.6%,其结构经1H NMR,31P NMR和IR确证。  相似文献   

5.
Some metallochromic indicators are examined for ion-pair formation with alkaloids, cationic surfactants and some pharmaceutical products. Eriochrome red B is recommended for the determination of quinine at pH 3.6 with extraction into chloroform and measurement at 475 nm.  相似文献   

6.
Summary New synthetic routes to 1-triacontanol and 1-bromotriacontane, and the novel ligands 4,4-diuntriacontanyl-2,2-bipy-ridine, 4-untriacontanyl-4'-methyl-2,2'-bipyridine and 4,4-ditricosyl-2,2-bipyridine are reported, as well as the preparation of the novel ruthenium(II) salts, [Ru(bipy)2(bipy-4-R-4-R)]Cl2 (bipy = 2,2'-bipyridine; R = R' = C31H63 or C23H47; R = C31H63, R' = Me).  相似文献   

7.
8.
The NMR method has been used to study the structure of the complexes [Cd(bipy)]SO4.4H2O, [Cd(bipy)](NO3)2.2H2O, [Cd(bipy)2](NO3)2.12H2O and [Cd(bipy)3](NO3)2.7H2O. The influence of the central ion and of diamagnetic currents of the rings in these complexes on the PMR spectrum has been investigated. In the complexes [Cd(bipy)](NO3)2.2H2O and [Cd(bipy)]SO4.4H2O two kinds of hydration isomers, with different PMR spectra, have been obtained.  相似文献   

9.
The resonanceRaman spectra of Fe(LC 12)3Cl2 and Fe(LC 18)3Cl2 (whereLC 12 andLC 18 denote 4,4′-didodecyloxy-2,2′-bipyridine and 4,4′-dioctadecyloxy-2,2′-bipyridine, respectively) have been measured along with their excitation profiles. The exciting lines of an Ar+ laser have been used. The bands appearing in theRR spectra within 1 200–1 600cm?1 (expected to arise from thebipy moiety C-N and C-C vibrations) suffer the greatest resonance enhancements. Both depolarization ratios of theRaman bands and excitation profiles reveal the interaction of the resonant electronic states.  相似文献   

10.
The complexes Zn(bipy)Cl2 and Zn(bipy)2Cl2 as well as 2,2′-bipyridyl in aqueous solution (D2O) have been examined by the NMR method. The presence of the monocationic bipy D+ form in aqueous bipyridyl solution has been found. The changes of chemical shifts of bipyridyl protons for complexes Zn(bipy)3Cl2 and Zn(bipy)Cl2 have confirmed explicitly the essential influence of diamagnetic currents on the NMR spectrum of Zn(bipy)3Cl2. The comparison of the spectra of 2,2′-bipyridyl (in CH3OH) and of Zn(bipy)Cl2 may also suggest the presence of the nonbonding metal-proton 6 interaction.  相似文献   

11.
The temperature dependence of the emission lifetime of the series of complexes Ru(bpy)n(4,4′-dpb) (bpy = 2,2′bipyridine, 4,4′-dpb = 4,4′-diphenyl-2,2′-bipyridine) has been studied in propionitrile/butyronitrile (4:5 v/v) solutions in the range 90–293 K. The obtained photophysical parameters show that the energy separation between the metal-to-ligand charge tranfer (3MLCT) emitting level and the photoreactive metal-centered (3MC) level changes across the series (ΔE = 3960, 4100, 4300, and 4700 cm?1 for Ru(bpy)), Ru(bpy)2(4,4′-dpb)2+, Ru(bpy)(4,4′-dpb), and Ru(4,4′-dpb), respectively, where ΔE is the energy separation between the minimum of the 3MLCT potential curve and 3MLCT – 3MC crossing point. Comparison between spectral and electrochemical data indicated that the changes in ΔE are due to stabilization of the MLCT levels in complexes containing 4,4′-dpb with respect to Ru(bpy)2+3. The photochemical data for the same complexes (as I? salts) have been obtained in CH2Cl2 in the presence of 0.01M Cl? upon irradiation at 462 nm. The complexes containing 4,4′-dpb are more photostable than Ru(bpy). Comparison between the data for thermal population of the 3MC photoreactive state and those for photochemistry indicated that the overall photochemical process is governed by (i) a thermal redistribution between the emitting and photoreactive excited states, and (ii) mechanistic factors, likely related to the size of the detaching ligand.  相似文献   

12.
The synthesis of the cyclometallated derivatives [PdLCl] and [PtLCl](HL = 6-t-butyl-2,2′-bipyridine) is reported. The deprotonated bipyridine is terdentate through the two nitrogen atoms and a carbon atom of the t-butyl substituent. The new complexes were characterized by 1H and 13C NMR and FAB-MS spectra.  相似文献   

13.
New palladium(II) and platinum(II) complexes, cis-[Pd(bpy)(sac)2] (1) and cis-[Pt(bpy)(sac)2] (2), where sac = saccharinate, bpy = 2,2′-bipyridine, have been synthesized and characterized by elemental analysis, UV–Vis, IR, 1H NMR and 13C NMR. The structures of the DMSO solvated complexes are determined by X-ray diffraction. Both complexes are isomorphous and the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of pyridyl groups of bpy in a cis fashion. The mononuclear species interact each other through weak intermolecular C–H?O hydrogen bonds, C–H?π and π?π interactions leading to three-dimensional supramolecular networks. All complexes exhibit a high thermal stability in the solid state, and are fluorescent in the solution.  相似文献   

14.
15.
Both bis- and tetrakis-substituted 2,2′-bipyridine complexes of lead(II), [Pb(bpy)2](PF6)2 and [Pb(bpy)4](PF6)2 · bpy, respectively, have been characterized by X-ray crystallography as hexafluorophosphate salts when three equivalents of bipyridine is combined with Pb(NO3)2 in aqueous solution prior to metathesis. The tetrakis-substituted product, [Pb(bpy)4](PF6)2 · bpy, shows an unusual combination of intramolecular and intermolecular π-stacking of two of the bipyridine ligands throughout the crystal. Incomplete metathesis also produces a catenated, mixed-anion complex, [Pb(bpy)2(µ-NO3)](PF6), where the nitrate bridges lead(II) metal centers to form a 1-D coordination polymer. If metathesis is carried out using perchlorate, a known [Pb(bpy)2](ClO4)2 analog is produced along with [bpyH](ClO4), which has not been previously characterized by X-ray crystallography.  相似文献   

16.
Polysiloxanes containing pendant tris(2,2′-bipyridine)ruthenium(II) complex (Ru(bpy)32+) were prepared by reaction of polysiloxane-pendant 2,2′-bipyridine (PSiO-bpy) with cis-Ru(bpy)2Cl2. In methanol solution, the polymer pendant Ru(bpy)32+ showed absorption maximum at 456nm and emission maximum at around 609nm, both of which are shifted to longer wavelength than the monomeric Ru(bpy)32+. The lifetime τ0 of the excited polymer complex with low Ru(bpy)32+ content was almost the same as that of the monomeric one in methanol (830ns), but τ0 of the polymer with higher complex content was shorter because of a concentration quenching. In a solid state, τ0 was much shorter (306–503ns) than that in a methanol solution contrary to the conventional polymeric system. Higher complex content in the polymer film caused higher glass transition temperature (Tg), but shorter τ0. These results indicate concentration quenching in the polymer film. The excited polymer pendant Ru(bpy)32+ was quenched by oxygen, and the relative emission intensity followed the Stern-Volmer equation. In a methanol solution the quenching rate constant (kq) was the same order of magnitude as the monomeric complex, and independent of the complex content in the polymer. In a film, kq was higher for the polymer with higher complex content.  相似文献   

17.
The tris(2,2′-bipyridine)cobalt(II) complex gives a reversible d.c. wave with E12 = ?1.02 V vs. SCE and a sharp differential pulse peak at Ep = ?1.03 V in a salted-out acetonitrile phase. A simple selective method is described for the determination of cobalt(II); down to 0.25 μg of cobalt(II) can be determined in presence of large amounts of Ni, Zn, Cd, Pb, and Cu; iron(III) can be masked with sodium fluoride. The method is applicable to the determination of >0.0l% cobalt in nickel salts and >5 × 10?5% cobalt in iron salts. Nickel(II) can also be extracted from aqueous solution and determined by differential pulse polarography, even in presence of a 20-fold amount of cobalt(II) by masking with EDTA; >0.01% of nickel in cobalt salts can be determined reproducibly.  相似文献   

18.
The redox reaction between cobalt(II) and gold(III) chloride in the presence of 1.10-phenanthroline or 2,2'-bipyridine was studied, and a titration of the cobalt(II) complex with a gold(III) chloride solution was developed. A 4-fold amount of 1,10-phenanthroline or 2,2'-bipyridine was necessary for rapid quantitative reaction; the permissible pH range was 1.5–5. The oxidation of the cobalt(II) complex proceeds rapidly at 40–50°C, and a direct potentiometric titration was possible. The following maximum errors were obtained: 3.3% for 0.2–1.0 mg Co, 2.0% for 1–5 mg Co, and 0.70% for 10–40 mg Co. The following ions did not interfere: Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(II), Cr(III), Al(III), Th(IV), Se(IV), Ti(IV), U(VI), Mo(VI), SO2-4 and PO3-4. Even small quantities of silver(I), copper(II), palladium(II), mercury(II)and iron(III) interfered. The method was applied to the determination of high cobalt contents in high-temperature nickel-base alloys.  相似文献   

19.
20.
New bis(phosphinoamine) and bis(phosphinite) derivatives of 2,2′-bipyridine were prepared through a single step reaction of 3,3′-diamino-2,2′-bipyridine or 3,3′-dihydroxy-2,2′-bipyridine with diphenylchlorophosphine, respectively. Their P = E chalcogenides (E = O, S, Se) were also prepared. All the new compounds were characterized by elemental analysis, IR and NMR spectroscopies. The molecular structure of 3,3′-bis(diphenylthiophosphinite)-2,2′-bipyridine was elucidated by single-crystal X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号